After watching WWDC 2025 session "Combine Metal 4 machine learning and graphics", I have decided to give it a shot to integrate the latest MTL4MachineLearningCommandEncoder to my existing render pipeline. After a lot of trial and errors, I managed to set up the pipeline and have the app compiled.
However, I am now stuck on creating a MTLLibrary with .mtlpackage.
Here is the code I have to create a MTLLibrary according the WWDC session https://developer.apple.com/videos/play/wwdc2025/262/?time=550:
let coreMLFilePath = bundle.path(forResource: "my_model", ofType: "mtlpackage")!
let coreMLURL = URL(string: coreMLFilePath)!
do {
metalDevice.makeLibrary(URL: coreMLURL)
} catch {
print("error: \(error)")
}
With the above code, I am getting error:
Error Domain=MTLLibraryErrorDomain Code=1 "Invalid metal package" UserInfo={NSLocalizedDescription=Invalid metal package}
What is the correct way to create a MTLLibrary with .mtlpackage? Do I see this error because the .mtlpackage I am using is incorrect? How should I go with debugging this?
I'd really appreciate if I could get some help on this as I have been stuck with it for some time now. Thanks in advance!
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Created
Hi, I'm currently using Metal Performance Shaders Graph (MPSGraphExecutable) to run neural network inference operations as part of a metal rendering pipeline.
I also tried to profile the usage of neural engine when running inference using MPSGraphExecutable but the graph shows no sign of neural engine usage. However, when I used the coreML model inspection tool in xcode and run performance report, it was able to use ANE.
Does MPSGraphExecutable automatically utilize the Apple Neural Engine (ANE) when running inference operations, or does it only execute on GPU?
My model (Core ML Package) was converted from a pytouch model using coremltools with ML program type and support iOS17.0+.
Any insights or documentation references would be greatly appreciated!