This is a simple program I just downloaded to test. Each epoch takes about 6s on the M1 MBA, but 1s on the Intel MBP. But all my programs run slow. Yes, the examples I have been running are fairly small.
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)
])
predictions = model(x_train[:1]).numpy()
tf.nn.softmax(predictions).numpy()
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
loss_fn(y_train[:1], predictions).numpy()
model.compile(optimizer = 'sgd', loss = loss_fn)
model.fit(x_train, y_train, epochs=10)
Topic:
Machine Learning & AI
SubTopic:
General
Tags: