I am developing an iOS app that uses YOLOv8 for object detection and aims to detect objects at 60 FPS using the UltraWide camera. My goal is to process every frame within captureOutput and utilize the detected data (such as coordinates) for each one.
I have a question regarding how background thread processing behaves in this scenario. Does the size of the YOLO model (n, s, m, etc.) or the weight of the operations inside captureOutput affect the number of frames that can be successfully processed?
Specifically, I would like to know if all frames will be processed sequentially with a delay due to heavy processing in the background, or if some frames will be dropped and not processed at all. Any insights on how to handle this would be greatly appreciated.
Thank you!
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
I’m working on real-time object detection using YOLOv8, but I only need to detect objects in approximately 40% of the screen area. Is it possible to limit the captureOut method to focus solely on that specific region of the screen?
If this isn’t feasible, I’m considering an approach where the full-screen pixel buffer is captured and then cropped to the target area before running detection. However, I’m concerned about how this might affect real-time performance.
I’d appreciate any insights on how to maintain real-time performance or suggestions for better alternatives. Thank you!
Topic:
Media Technologies
SubTopic:
Photos & Camera
Tags:
ML Compute
Machine Learning
Core Image
AVFoundation
I'm developing a tennis ball tracking feature using Vision Framework in Swift, specifically utilizing VNDetectedObjectObservation and VNTrackObjectRequest.
Occasionally (but not always), I receive the following runtime error:
Failed to perform SequenceRequest: Error Domain=com.apple.Vision Code=9 "Internal error: unexpected tracked object bounding box size" UserInfo={NSLocalizedDescription=Internal error: unexpected tracked object bounding box size}
From my investigation, I suspect the issue arises when the bounding box from the initial observation (VNDetectedObjectObservation) is too small. However, Apple's documentation doesn't clearly define the minimum bounding box size that's considered valid by VNTrackObjectRequest.
Could someone clarify:
What is the minimum acceptable bounding box width and height (normalized) that Vision Framework's VNTrackObjectRequest expects?
Is there any recommended practice or official guidance for bounding box size validation before creating a tracking request?
This information would be extremely helpful to reliably avoid this internal error.
Thank you!
I'm developing a tennis ball tracking feature using Vision Framework in Swift, specifically utilizing VNDetectedObjectObservation and VNTrackObjectRequest.
Occasionally (but not always), I receive the following runtime error:
Failed to perform SequenceRequest: Error Domain=com.apple.Vision Code=9 "Internal error: unexpected tracked object bounding box size" UserInfo={NSLocalizedDescription=Internal error: unexpected tracked object bounding box size}
From my investigation, I suspect the issue arises when the bounding box from the initial observation (VNDetectedObjectObservation) is too small. However, Apple's documentation doesn't clearly define the minimum bounding box size that's considered valid by VNTrackObjectRequest.
Could someone clarify:
What is the minimum acceptable bounding box width and height (normalized) that Vision Framework's VNTrackObjectRequest expects?
Is there any recommended practice or official guidance for bounding box size validation before creating a tracking request?
This information would be extremely helpful to reliably avoid this internal error.
Thank you!
Topic:
Media Technologies
SubTopic:
Photos & Camera
Tags:
ML Compute
Machine Learning
Camera
AVFoundation