Please consider this very trivial C code, which was run on 15.3.1 of macos:
#include <stdio.h>
#include <stdlib.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "sys/socket.h"
#include <string.h>
#include <unistd.h>
#include <ifaddrs.h>
#include <net/if.h>
// prints out the sockaddr_in6
void print_addr(const char *msg_prefix, struct sockaddr_in6 sa6) {
char addr_text[INET6_ADDRSTRLEN] = {0};
printf("%s%s:%d, addr family=%u\n",
msg_prefix,
inet_ntop(AF_INET6, &sa6.sin6_addr, (char *) &addr_text, INET6_ADDRSTRLEN),
sa6.sin6_port,
sa6.sin6_family);
}
// creates a datagram socket
int create_dgram_socket() {
const int fd = socket(AF_INET6, SOCK_DGRAM, 0);
if (fd < 0) {
perror("Socket creation failed");
return -1;
}
return fd;
}
int main() {
printf("current process id:%ld parent process id: %ld\n", (long) getpid(), (long) getppid());
//
// hardcode a link-local IPv6 address of a interface which is down
// ifconfig:
// ,,,
// awdl0: flags=8822<BROADCAST,SMART,SIMPLEX,MULTICAST> mtu 1500
// options=6460<TSO4,TSO6,CHANNEL_IO,PARTIAL_CSUM,ZEROINVERT_CSUM>
// ...
// inet6 fe80::34be:50ff:fe14:ecd7%awdl0 prefixlen 64 scopeid 0x10
// nd6 options=201<PERFORMNUD,DAD>
// media: autoselect (<unknown type>)
// status: inactive
//
const char *ip6_addr_str = "fe80::34be:50ff:fe14:ecd7"; // link-local ipv6 address from above ifconfig output
// parse the string literal to in6_addr
struct in6_addr ip6_addr;
int rv = inet_pton(AF_INET6, ip6_addr_str, &ip6_addr);
if (rv != 1) {
fprintf(stderr, "failed to parse ipv6 addr %s\n", ip6_addr_str);
exit(EXIT_FAILURE);
}
// create a AF_INET6 SOCK_DGRAM socket
const int sock_fd = create_dgram_socket();
if (sock_fd < 0) {
exit(EXIT_FAILURE);
}
printf("created a socket, descriptor=%d\n", sock_fd);
// create a destination sockaddr which points to the above
// ipv6 link-local address and an arbitrary port
const int dest_port = 12345;
struct sockaddr_in6 dest_sock_addr;
memset((char *) &dest_sock_addr, 0, sizeof(struct sockaddr_in6));
dest_sock_addr.sin6_addr = ip6_addr;
dest_sock_addr.sin6_port = htons(dest_port);
dest_sock_addr.sin6_family = AF_INET6;
dest_sock_addr.sin6_scope_id = 0x10; // scopeid from the above ifconfig output
// now sendto() to that address, whose network interface is down.
// we expect sendto() to return an error
print_addr("sendto() to ", dest_sock_addr);
const char *msg = "hello";
const size_t msg_len = strlen(msg) + 1;
rv = sendto(sock_fd, msg, msg_len, 0, (struct sockaddr *) &dest_sock_addr, sizeof(dest_sock_addr));
if (rv == -1) {
perror("sendto() expectedly failed");
close(sock_fd);
exit(EXIT_FAILURE);
}
printf("sendto() unexpectedly succeeded\n"); // should not reach here, we expect sendto() to return an error
return 0;
}
It creates a SOCK_DGRAM socket and attempts to sendto()
to a link-local IPv6 address of a local network interface which is not UP. The sendto() is expected to fail with a "network is down" (or at least fail with some error). Let's see how it behaves.
Copy that code to a file called netdown.c
and compile it as follows:
clang netdown.c
Now run the program:
./a.out
That results in the following output:
current process id:29290 parent process id: 21614
created a socket, descriptor=3
sendto() to fe80::34be:50ff:fe14:ecd7:14640, addr family=30
sendto() unexpectedly succeeded
(To reproduce this locally, replace the IPv6 address in that code with a link-local IPv6 address of an interface that is not UP on your system)
Notice how the sendto() returned successfully without any error giving an impression to the application code that the message has been sent. In reality, the message isn't really sent. Here's the system logs from that run:
PID Type Date & Time Process Message
debug 2025-03-13 23:36:36.830147 +0530 kernel Process (a.out) allowed via dev tool environment (/System/Applications/Utilities/Terminal.app/Contents/MacOS/Terminal)
debug 2025-03-13 23:36:36.833054 +0530 kernel [SPI][HIDSPI]
TX: 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
RX: 20 02 00 00 00 00 38 00 10 02 00 17 00 00 2E 00
26700 error 2025-03-13 23:36:36.838607 +0530 nehelper Failed to get the signing identifier for 29290: No such process
26700 error 2025-03-13 23:36:36.838608 +0530 nehelper Failed to get the code directory hash for 29290: No such process
default 2025-03-13 23:36:36.840070 +0530 kernel cfil_dispatch_attach_event:3507 CFIL: Failed to get effective audit token for <sockID 22289651233205710 <4f3051d7ec2dce>>
26700 error 2025-03-13 23:36:36.840678 +0530 nehelper Failed to get the signing identifier for 29290: No such process
26700 error 2025-03-13 23:36:36.840679 +0530 nehelper Failed to get the code directory hash for 29290: No such process
default 2025-03-13 23:36:36.841742 +0530 kernel cfil_hash_entry_log:6082 <CFIL: Error: sosend_reinject() failed>: [29290 ] <UDP(17) out so 891be95f39bd0385 22289651233205710 22289651233205710 age 0> lport 60244 fport 12345 laddr fe80::34be:50ff:fe14:ecd7 faddr fe80::34be:50ff:fe14:ecd7 hash D7EC2DCE
default 2025-03-13 23:36:36.841756 +0530 kernel cfil_service_inject_queue:4466 CFIL: sosend() failed 50
Notice the last line where it states the sosend() (and internal impl detail of macos) failed with error code 50, which corresponds to ENETDOWN
("Network is down"). However, like I noted, this error was never propagated back to the application from the sendto()
system call.
The documentation of sendto()
system call states:
man sendto
...
Locally detected errors are indicated by a return value of -1.
...
RETURN VALUES
Upon successful completion, the number of bytes which were sent is returned. Otherwise, -1 is returned and the global variable errno is set to indicate the error.
So I would expect sendto()
to return -1, which it isn't.
The 15.3.1 source of xnu
hasn't yet been published but there is the 15.3 version here https://github.com/apple-oss-distributions/xnu/tree/xnu-11215.81.4 and looking at the corresponding function cfil_service_inject_queue
, line 4466 (the one which is reported in the logs) https://github.com/apple-oss-distributions/xnu/blob/xnu-11215.81.4/bsd/net/content_filter.c#L4466, the code there logs this error and the cfil_service_inject_queue
function then returns back the error
. However, looking at the call sites of the call to cfil_service_inject_queue(...)
, there are several places within that file which don't track the return value (representing an error value) and just ignore it. Is that intentional and does that explain this issue?
Does this deserve to be reported as a bug through feedback assistant?