Networking

RSS for tag

Explore the networking protocols and technologies used by the device to connect to Wi-Fi networks, Bluetooth devices, and cellular data services.

Networking Documentation

Posts under Networking subtopic

Post

Replies

Boosts

Views

Activity

After creating the profile using eapolcfg and attempting to connect to the enterprise network, eapolclient connection fails.
I use eapolcfg in Apple's open source eap8021x repository to connect to the enterprise network. 1.https://github.com/gfleury/eap8021x-debug https://opensource.apple.com/source/eap8021x/eap8021x-304.100.1/ Our enterprise network authentication is PEAP. So far, I have created a profile using the following commands and have done the access. ./eapolcfg createProfile --authType PEAP --SSID myssid --securityType WPA2 --userDefinedName MyProfile ./eapolcfg setPasswordItem --password mypassword --name myname --SSID myssid ./eapolcfg startAuthentication --interface en0 --SSID myssid After I performed this series of operations, I passed BOOL success = [self.interface associateToEnterpriseNetwork:network identity:nil username:username password:password error:&error]; Connection will pop up the following pop-up window, sometimes associateToEnterpriseNetwork will fail. I don't know what went wrong, is it that I missed some steps through the eapolcfg [tool?] This function also reports the following error:Error Domain=com.apple.coreWLAN.EAPOL.error Code=1 "(null)" Please answer my questions. Thank you very much
1
0
437
Mar ’25
Multipeer Connectivity remains in .connecting state and drops connections when Mobile Data is enabled
We are using Multipeer Connectivity (MCSession, MCNearbyServiceBrowser, MCNearbyServiceAdvertiser) for nearby peer discovery and communication. **Observed behaviour: ** When Wi-Fi is ON (Not connected to any network) and Mobile Data is also ON: Peer discovery (foundPeer) consistently succeeds Invitation is sent using invitePeer MCSession transitions to .connecting The session remains indefinitely in .connecting connected is never reached notConnected is also not reported When Mobile Data is turned OFF, the same flow reliably reaches .connected. Key details: Both devices have Wi-Fi and Bluetooth enabled Browsing and advertising are active on both devices Application-level timeouts and session resets are implemented The Issue is reproducible across multiple devices with iOS 26 versions. Expectation / Question: We understand that Multipeer Connectivity does not use cellular data for peer discovery or transport. However, when Wi-Fi is available and peers are discovered successfully, we would like clarification on the following: Is it expected behavior that enabling Mobile Data can cause the invitation/connection phase to remain indefinitely in .connecting without transitioning to .notConnected? Are there recommended best practices to avoid stalled invitation or transport negotiation in this scenario? Is there a supported way to detect or recover from a stalled .connecting state beyond application-level timeouts and session resets? Any guidance on expected behavior or recommended handling would be appreciated.
1
0
77
Jan ’26
Upgrading NEFilterDataProvider Causes System Network Interruption
Hi, when I perform an overlay installation via a PKG on macOS for an application containing the NEFilterDataProvider functionality, there is a chance that the entire system network becomes unreachable. Disabling the corresponding Content Filter in "System Settings > Network > Filters" immediately restores network connectivity. This issue does not occur every time, with a frequency of approximately 1 in 20 installation attempts.  The following details may help identify the problem: The Filter.app containing the NEFilterDataProvider resides within the main app's Resources directory, e.g., /Applications/Main.app/Contents/Resources/Filter.app Main.app is installed via a PKG; the issue typically occurs during an overlay installation of Main.app. The NEFilterDataProvider operates as a System Extension. The func handleNewFlow(_ flow: NEFilterFlow) -> NEFilterNewFlowVerdict {} returns .allow. Wireshark packet captures show TCP packets but no UDP packets; TCP handshakes cannot complete. Disabling the corresponding content filter in "System Settings > Network > Filters" restores the network; re-enabling it breaks connectivity again. After waiting for a period, approximately 30-60 minutes, network connectivity can recover automatically. What causes this and how can it be fixed? Any workarounds?
1
0
132
Oct ’25
intermittent multicast socket failures, new to Sequoia, still not fixed
multicast sockets fail to send/receive on macosx, errno 65 "no route to host". Wireshark and Terminal.app (which have root privileges) both show incoming multicast traffic just fine. Normal UDP broadcast sockets have no problems. Toggling the Security&Privacy -> Local Network setting may fix the problem for some Users. There is no pattern for when multicast socket fails. Sometimes, recreating the sockets fix the problem. Restart the app, sometimes multicast fails, sometimes success (intermittent, no pattern). Reboot machine (intermittent fail) Create a fresh new user on machine, install single version of app, give app permission. (intermittent fail, same as above). We have all the normal entitlements / notarized app. Similar posts here see FB16923535, Related to FB16512666 https://forum.xojo.com/t/udp-multicast-receive-on-mac-failing-intermittant/83221 see my post from 2012 "distinguishing between SENDING sockets and RECEIVING sockets" for source code example of how we bind multicast sockets. Our other socket code is standard "Stevens, et al." code. The bind() is the call that fails in this case. https://stackoverflow.com/questions/10692956/what-does-it-mean-to-bind-a-multicast-udp-socket . Note that this post from 2012 is still relevant, and that it is a workaround to a longstanding Apple bug that was never fixed. Namely, "Without this fix, multicast sending will intermittently get sendto() errno 'No route to host'. If anyone can shed light on why unplugging a DHCP gateway causes Mac OS X multicast SENDING sockets to get confused, I would love to hear it." This may be a hint as to the underlying bug that Apple really needs to fix, but if it's not, then please Apple, fix the Sequoia bug first. These are probably different bugs because in one case, sendto() fails when a socket becomes "unbound" after you unplug an unrelated network cable. In this case, bind() fails, so sendto() is never even called. Note, that we have also tried to use other implementations for network discovery, including Bonjour, CFNetwork, etc. Bonjour fails intermittently, and also suffers from both bugs mentioned above, amongst others.
3
0
104
May ’25
DNS updates and Apple Private Relay - major issue
After dropping an A-record TTL to 60 secs (it was previously no higher than 600 secs for several weeks) and making an IP change for a small business website on Monday, I took down the old web service just over 24 hours later on Tuesday evening. We then had reports of some customers not being able to access the website on Wednesday morning. On investigation using my iPhone it would appear that Apple Private Relay is still directing clients to the old IP address. It's just as well I have iCloud+ as I would never have seen this issue otherwise and would have been none the wiser as to why some customers were having problems. Has anyone else seen this and/or have a fix other than waiting longer? Do you know how long it takes for Apple Private Relay to update? This isn't expected behaviour of DNS? I spoke to someone at Apple yesterday and there wasn't much they can do. I hope they're escalating internally as almost 3 days later it's still pointing users to the old IP address despite having ample time for proper DNS propagation.
2
0
178
Nov ’25
SwiftSMTP broken: Error ioOnClosedChannel on latest macOS
Hi! I wrote an internal used backup command line tool which is in use since several years. Today I got an error while sending an email: “Failed: ioOnClosedChannel”. I assume that the latest macOS updates did break my app. On the server I use macOS 15.7 and on my development machine macOS 26. Here is the related code: private func sendMail() { var a : [Email.Attachment] = [] if self.imageData != nil { switch self.imageType { case .tiff: a.append(Email.Attachment(name: "Statistics.tif", contentType: #"image/tiff"#, contents: ByteBuffer(bytes: self.imageData!))) case .pdf: a.append(Email.Attachment(name: "Statistics.pdf", contentType: #"application/pdf"#, contents: ByteBuffer(bytes: self.imageData!))) case .unknown: fatalError("Unimplemented attachment type!") } } mailHtml = mailHtml.replacingOccurrences(of: "<br>", with: "<br>\n") let email = Email(sender: .init(name: "Backup", emailAddress: "SENDER@MYDOMAIN"), replyTo: nil, recipients: recipients, cc: [], bcc: [], subject: self.subject, body: .universal(plain: self.mailText, html: mailHtml), attachments: a) let evg = MultiThreadedEventLoopGroup(numberOfThreads: System.coreCount) let mailer = Mailer(group: evg, configuration: smtpConfig, transmissionLogger: nil) do { print("Sending mail... ", terminator: "") try mailer.send(email: email).wait() // <-- ERROR HERE Failed: ioOnClosedChannel print("done.") } catch { print("Failed: \(error)") } do { try evg.syncShutdownGracefully() } catch { print("Failed shutdown: \(error)") } } I use https://github.com/sersoft-gmbh/swift-smtp. Any clue about the reason of this error? TIA, GreatOm
2
0
243
Sep ’25
NEAppPushProvider not works properly on iOS26
In my app I have Local Push connectivity for local push notifications. My app has proper entitlment granted by Apple and NEAppPushProvider was working perfectly on older iOS versions before iOS26. The problem I faced with iOS26: when i enable VPN - NEAppPushProvider stops with reason /** @const NEProviderStopReasonNoNetworkAvailable There is no network connectivity. */ case noNetworkAvailable = 3. But device is still connected to proper SSID that is included to matchSSIDs. I discovered it only happens if my VPN config file include this line redirect-gateway def1 without that line NEAppPushProvider works as expected with enabled VPN. I use OpenVPN app. Is it a bug of iOS26 or I need some additional setup? Please help!
2
0
82
Sep ’25
Networking Resources
General: Forums subtopic: App & System Services > Networking TN3151 Choosing the right networking API Networking Overview document — Despite the fact that this is in the archive, this is still really useful. TLS for App Developers forums post Choosing a Network Debugging Tool documentation WWDC 2019 Session 712 Advances in Networking, Part 1 — This explains the concept of constrained networking, which is Apple’s preferred solution to questions like How do I check whether I’m on Wi-Fi? TN3135 Low-level networking on watchOS TN3179 Understanding local network privacy Adapt to changing network conditions tech talk Understanding Also-Ran Connections forums post Extra-ordinary Networking forums post Foundation networking: Forums tags: Foundation, CFNetwork URL Loading System documentation — NSURLSession, or URLSession in Swift, is the recommended API for HTTP[S] on Apple platforms. Moving to Fewer, Larger Transfers forums post Testing Background Session Code forums post Network framework: Forums tag: Network Network framework documentation — Network framework is the recommended API for TCP, UDP, and QUIC on Apple platforms. Building a custom peer-to-peer protocol sample code (aka TicTacToe) Implementing netcat with Network Framework sample code (aka nwcat) Configuring a Wi-Fi accessory to join a network sample code Moving from Multipeer Connectivity to Network Framework forums post NWEndpoint History and Advice forums post Network Extension (including Wi-Fi on iOS): See Network Extension Resources Wi-Fi Fundamentals TN3111 iOS Wi-Fi API overview Wi-Fi Aware framework documentation Wi-Fi on macOS: Forums tag: Core WLAN Core WLAN framework documentation Wi-Fi Fundamentals Secure networking: Forums tags: Security Apple Platform Security support document Preventing Insecure Network Connections documentation — This is all about App Transport Security (ATS). WWDC 2017 Session 701 Your Apps and Evolving Network Security Standards [1] — This is generally interesting, but the section starting at 17:40 is, AFAIK, the best information from Apple about how certificate revocation works on modern systems. Available trusted root certificates for Apple operating systems support article Requirements for trusted certificates in iOS 13 and macOS 10.15 support article About upcoming limits on trusted certificates support article Apple’s Certificate Transparency policy support article What’s new for enterprise in iOS 18 support article — This discusses new key usage requirements. Technote 2232 HTTPS Server Trust Evaluation Technote 2326 Creating Certificates for TLS Testing QA1948 HTTPS and Test Servers Miscellaneous: More network-related forums tags: 5G, QUIC, Bonjour On FTP forums post Using the Multicast Networking Additional Capability forums post Investigating Network Latency Problems forums post WirelessInsights framework documentation iOS Network Signal Strength forums post Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" [1] This video is no longer available from Apple, but the URL should help you locate other sources of this info.
0
0
3.9k
Dec ’25
Does Apple’s Wi‑Fi Aware data communication use IPv6?
The Wi‑Fi Alliance’s Wi‑Fi Aware data communication uses IPv6. However, in Chapter 53 “Wi‑Fi Aware” of the Accessory Design Guidelines for Apple Devices, Release R26, it is stated that “The Neighbor Discovery Protocol (NDP) for IPv6 address resolution is not supported.” This has caused confusion among developers: Does Apple’s Wi‑Fi Aware data communication actually use IPv6? What is the impact of “The Neighbor Discovery Protocol (NDP) for IPv6 address resolution is not supported” in Apple’s implementation?
1
0
163
Aug ’25
Network Extension Provider Packaging
This is a topic that’s come up a few times on the forums, so I thought I’d write up a summary of the issues I’m aware of. If you have questions or comments, start a new thread in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Network Extension Provider Packaging There are two ways to package a network extension provider: App extension ( appex ) System extension ( sysex ) Different provider types support different packaging on different platforms. See TN3134 Network Extension provider deployment for the details. Some providers, most notably packet tunnel providers on macOS, support both appex and sysex packaging. Sysex packaging has a number of advantages: It supports direct distribution, using Developer ID signing. It better matches the networking stack on macOS. An appex is tied to the logged in user, whereas a sysex, and the networking stack itself, is global to the system as a whole. Given that, it generally makes sense to package your Network Extension (NE) provider as a sysex on macOS. If you’re creating a new product that’s fine, but if you have an existing iOS product that you want to bring to macOS, you have to account for the differences brought on by the move to sysex packaging. Similarly, if you have an existing sysex product on macOS that you want to bring to iOS, you have to account for the appex packaging. This post summarises those changes. Keep the following in mind while reading this post: The information here applies to all NE providers that can be packaged as either an appex or a sysex. When this post uses a specific provider type in an example, it’s just an example. Unless otherwise noted, any information about iOS also applies to iPadOS, tvOS, and visionOS. Process Lifecycle With appex packaging, the system typically starts a new process for each instance of your NE provider. For example, with a packet tunnel provider: When the users starts the VPN, the system creates a process and then instantiates and starts the NE provider in that process. When the user stops the VPN, the system stops the NE provider and then terminates the process running it. If the user starts the VPN again, the system creates an entirely new process and instantiates and starts the NE provider in that. In contrast, with sysex packaging there’s typically a single process that runs all off the sysex’s NE providers. Returning to the packet tunnel provider example: When the users starts the VPN, the system instantiates and starts the NE provider in the sysex process. When the user stops the VPN, the system stops and deallocates the NE provider instances, but leaves the sysex process running. If the user starts the VPN again, the system instantiates and starts a new instances of the NE provider in the sysex process. This lifecycle reflects how the system runs the NE provider, which in turn has important consequences on what the NE provider can do: An appex acts like a launchd agent [1], in that it runs in a user context and has access to that user’s state. A sysex is effectively a launchd daemon. It runs in a context that’s global to the system as a whole. It does not have access to any single user’s state. Indeed, there might be no user logged in, or multiple users logged in. The following sections explore some consequences of the NE provider lifecycle. [1] It’s not actually run as a launchd agent. Rather, there’s a system launchd agent that acts as the host for the app extension. App Groups With an app extension, the app extension and its container app run as the same user. Thus it’s trivial to share state between them using an app group container. Note When talking about extensions on Apple platforms, the container app is the app in which the extension is embedded and the host app is the app using the extension. For network extensions the host app is the system itself. That’s not the case with a system extension. The system extension runs as root whereas the container app runs an the user who launched it. While both programs can claim access to the same app group, the app group container location they receive will be different. For the system extension that location will be inside the home directory for the root user. For the container app the location will be inside the home directory of the user who launched it. This does not mean that app groups are useless in a Network Extension app. App groups are also a factor in communicating between the container app and its extensions, the subject of the next section. IMPORTANT App groups have a long and complex history on macOS. For the full story, see App Groups: macOS vs iOS: Working Towards Harmony. Communicating with Extensions With an app extension there are two communication options: App-provider messages App groups App-provider messages are supported by NE directly. In the container app, send a message to the provider by calling sendProviderMessage(_:responseHandler:) method. In the appex, receive that message by overriding the handleAppMessage(_:completionHandler:) method. An appex can also implement inter-process communication (IPC) using various system IPC primitives. Both the container app and the appex claim access to the app group via the com.apple.security.application-groups entitlement. They can then set up IPC using various APIs, as explain in the documentation for that entitlement. With a system extension the story is very different. App-provider messages are supported, but they are rarely used. Rather, most products use XPC for their communication. In the sysex, publish a named XPC endpoint by setting the NEMachServiceName property in its Info.plist. Listen for XPC connections on that endpoint using the XPC API of your choice. Note For more information about the available XPC APIs, see XPC Resources. In the container app, connect to that named XPC endpoint using the XPC Mach service name API. For example, with NSXPCConnection, initialise the connection with init(machServiceName:options:), passing in the string from NEMachServiceName. To maximise security, set the .privileged flag. Note XPC Resources has a link to a post that explains why this flag is important. If the container app is sandboxed — necessary if you ship on the Mac App Store — then the endpoint name must be prefixed by an app group ID that’s accessible to that app, lest the App Sandbox deny the connection. See the app groups documentation for the specifics. When implementing an XPC listener in your sysex, keep in mind that: Your sysex’s named XPC endpoint is registered in the global namespace. Any process on the system can open a connection to it [1]. Your XPC listener must be prepared for this. If you want to restrict connections to just your container app, see XPC Resources for a link to a post that explains how to do that. Even if you restrict access in that way, it’s still possible for multiple instances of your container app to be running simultaneously, each with its own connection to your sysex. This happens, for example, if there are multiple GUI users logged in and different users run your container app. Design your XPC protocol with this in mind. Your sysex only gets one named XPC endpoint, and thus one XPC listener. If your sysex includes multiple NE providers, take that into account when you design your XPC protocol. [1] Assuming that connection isn’t blocked by some other mechanism, like the App Sandbox. Inter-provider Communication A sysex can include multiple types of NE providers. For example, a single sysex might include a content filter and a DNS proxy provider. In that case the system instantiates all of the NE providers in the same sysex process. These instances can communicate without using IPC, for example, by storing shared state in global variables (with suitable locking, of course). It’s also possible for a single container app to contain multiple sysexen, each including a single NE provider. In that case the system instantiates the NE providers in separate processes, one for each sysex. If these providers need to communicate, they have to use IPC. In the appex case, the system instantiates each provider in its own process. If two providers need to communicate, they have to use IPC. Managing Secrets An appex runs in a user context and thus can store secrets, like VPN credentials, in the keychain. On macOS this includes both the data protection keychain and the file-based keychain. It can also use a keychain access group to share secrets with its container app. See Sharing access to keychain items among a collection of apps. Note If you’re not familiar with the different types of keychain available on macOS, see TN3137 On Mac keychain APIs and implementations. A sysex runs in the global context and thus doesn’t have access to user state. It also doesn’t have access to the data protection keychain. It must use the file-based keychain, and specifically the System keychain. That means there’s no good way to share secrets with the container app. Instead, do all your keychain operations in the sysex. If the container app needs to work with a secret, have it pass that request to the sysex via IPC. For example, if the user wants to use a digital identity as a VPN credential, have the container app get the PKCS#12 data and password and then pass that to the sysex so that it can import the digital identity into the keychain. Memory Limits iOS imposes strict memory limits an NE provider appexen [1]. macOS imposes no memory limits on NE provider appexen or sysexen. [1] While these limits are not documented officially, you can get a rough handle on the current limits by reading the posts in this thread. Frameworks If you want to share code between a Mac app and its embedded appex, use a structure like this: MyApp.app/ Contents/ MacOS/ MyApp PlugIns/ MyExtension.appex/ Contents/ MacOS/ MyExtension … Frameworks/ MyFramework.framework/ … There’s one copy of the framework, in the app’s Frameworks directory, and both the app and the appex reference it. This approach works for an appex because the system always loads the appex from your app’s bundle. It does not work for a sysex. When you activate a sysex, the system copies it to a protected location. If that sysex references a framework in its container app, it will fail to start because that framework isn’t copied along with the sysex. The solution is to structure your app like this: MyApp.app/ Contents/ MacOS/ MyApp Library/ SystemExtensions/ MyExtension.systemextension/ Contents/ MacOS/ MyExtension Frameworks/ MyFramework.framework/ … … That is, have both the app and the sysex load the framework from the sysex’s Frameworks directory. When the system copies the sysex to its protected location, it’ll also copy the framework, allowing the sysex to load it. To make this work you have to change the default rpath configuration set up by Xcode. Read Dynamic Library Standard Setup for Apps to learn how that works and then tweak things so that: The framework is embedded in the sysex, not the container app. The container app has an additional LC_RPATH load command for the sysex’s Frameworks directory (@executable_path/../Library/SystemExtensions/MyExtension.systemextension/Contents/Frameworks). The sysex’s LC_RPATH load command doesn’t reference the container app’s Frameworks directory (@executable_path/../../../../Frameworks) but instead points to the sysex’s Framweorks directory (@executable_path/../Frameworks). Entitlements When you build an app with an embedded NE extension, both the app and the extension must be signed with the com.apple.developer.networking.networkextension entitlement. This is a restricted entitlement, that is, it must be authorised by a provisioning profile. The value of this entitlement is an array, and the values in that array differ depend on your distribution channel: If you distribute your app directly with Developer ID signing, use the values with the -systemextension suffix. Otherwise — including when you distribute the app on the App Store and when signing for development — use the values without that suffix. Make sure you authorise these values with your provisioning profile. If, for example, you use an App Store distribution profile with a Developer ID signed app, things won’t work because the profile doesn’t authorise the right values. In general, the easiest option is to use Xcode’s automatic code signing. However, watch out for the pitfall described in Exporting a Developer ID Network Extension. Revision History 2025-11-06 Added the Entitlements section. Explained that, with sysex packaging, multiple instances of your container app might connect simultaneously with your sysex. 2025-09-17 First posted.
0
0
152
Nov ’25
Recommended alternatives to leaf cert pinning to prevent MITM
Hey there Are there any recommendations or guidance for apps on alternatives to certificate pinning to secure their device network traffic? I want to move away from the overhead and risk associated with rotating certificates when using leaf pinning. However, I also don't want people to be able to perform a MITM attack easily using something like Charles Proxy with a self‑signed certificate added to the trust store. My understanding is that an app cannot distinguish between user‑trusted certificates and system‑trusted certificates in the trust store, so it cannot block traffic that uses user‑trusted certificates.
0
0
53
3w
How to add more cipher suites
I want to add more cipher suites. I use NWConnection to make a connection. Before I use sec_protocol_options_append_tls_ciphersuite method to add more cipher suites, I found that Apple provided 20 cipher suites shown in the client hello packet. But after I added three more cipher suites, I found that nothing changed, and still original 20 cipher suites shown in the client hello packet when I made a new connection. The following is the code about connection. I want to add three more cipher suites: tls_ciphersuite_t.ECDHE_ECDSA_WITH_AES_128_CBC_SHA256, tls_ciphersuite_t.ECDHE_ECDSA_WITH_AES_256_CBC_SHA384, tls_ciphersuite_t.ECDHE_RSA_WITH_AES_256_CBC_SHA384 Can you give me some advice about how to add more cipher suites? Thanks. By the way, I working on a MacOS app. Xcode version: 16 MacOS version: 15.6
1
0
177
Dec ’25
Content filtering
Hello team, Would this mean that content filters intended for all browsing can only be implemented for managed devices using MDM? My goal would be to create a content filtering app for all users, regardless of if their device is managed/supervised. thanks.
1
0
93
Jan ’26
How can a Network Extension notify or trigger tasks in the main app when it’s backgrounded or killed?
I’m developing a iOS VPN app, and I need to execute a task in the main app even when it’s in the background or killed state. I know the Network Extension continues running during those times. Is there a way for the extension to immediately notify the app or trigger a task on the app side?
1
0
92
Sep ’25
sendto() system call doesn't return an error even when there is one
Please consider this very trivial C code, which was run on 15.3.1 of macos: #include <stdio.h> #include <stdlib.h> #include <netinet/in.h> #include <arpa/inet.h> #include "sys/socket.h" #include <string.h> #include <unistd.h> #include <ifaddrs.h> #include <net/if.h> // prints out the sockaddr_in6 void print_addr(const char *msg_prefix, struct sockaddr_in6 sa6) { char addr_text[INET6_ADDRSTRLEN] = {0}; printf("%s%s:%d, addr family=%u\n", msg_prefix, inet_ntop(AF_INET6, &sa6.sin6_addr, (char *) &addr_text, INET6_ADDRSTRLEN), sa6.sin6_port, sa6.sin6_family); } // creates a datagram socket int create_dgram_socket() { const int fd = socket(AF_INET6, SOCK_DGRAM, 0); if (fd < 0) { perror("Socket creation failed"); return -1; } return fd; } int main() { printf("current process id:%ld parent process id: %ld\n", (long) getpid(), (long) getppid()); // // hardcode a link-local IPv6 address of a interface which is down // ifconfig: // ,,, // awdl0: flags=8822<BROADCAST,SMART,SIMPLEX,MULTICAST> mtu 1500 // options=6460<TSO4,TSO6,CHANNEL_IO,PARTIAL_CSUM,ZEROINVERT_CSUM> // ... // inet6 fe80::34be:50ff:fe14:ecd7%awdl0 prefixlen 64 scopeid 0x10 // nd6 options=201<PERFORMNUD,DAD> // media: autoselect (<unknown type>) // status: inactive // const char *ip6_addr_str = "fe80::34be:50ff:fe14:ecd7"; // link-local ipv6 address from above ifconfig output // parse the string literal to in6_addr struct in6_addr ip6_addr; int rv = inet_pton(AF_INET6, ip6_addr_str, &ip6_addr); if (rv != 1) { fprintf(stderr, "failed to parse ipv6 addr %s\n", ip6_addr_str); exit(EXIT_FAILURE); } // create a AF_INET6 SOCK_DGRAM socket const int sock_fd = create_dgram_socket(); if (sock_fd < 0) { exit(EXIT_FAILURE); } printf("created a socket, descriptor=%d\n", sock_fd); // create a destination sockaddr which points to the above // ipv6 link-local address and an arbitrary port const int dest_port = 12345; struct sockaddr_in6 dest_sock_addr; memset((char *) &dest_sock_addr, 0, sizeof(struct sockaddr_in6)); dest_sock_addr.sin6_addr = ip6_addr; dest_sock_addr.sin6_port = htons(dest_port); dest_sock_addr.sin6_family = AF_INET6; dest_sock_addr.sin6_scope_id = 0x10; // scopeid from the above ifconfig output // now sendto() to that address, whose network interface is down. // we expect sendto() to return an error print_addr("sendto() to ", dest_sock_addr); const char *msg = "hello"; const size_t msg_len = strlen(msg) + 1; rv = sendto(sock_fd, msg, msg_len, 0, (struct sockaddr *) &dest_sock_addr, sizeof(dest_sock_addr)); if (rv == -1) { perror("sendto() expectedly failed"); close(sock_fd); exit(EXIT_FAILURE); } printf("sendto() unexpectedly succeeded\n"); // should not reach here, we expect sendto() to return an error return 0; } It creates a SOCK_DGRAM socket and attempts to sendto() to a link-local IPv6 address of a local network interface which is not UP. The sendto() is expected to fail with a "network is down" (or at least fail with some error). Let's see how it behaves. Copy that code to a file called netdown.c and compile it as follows: clang netdown.c Now run the program: ./a.out That results in the following output: current process id:29290 parent process id: 21614 created a socket, descriptor=3 sendto() to fe80::34be:50ff:fe14:ecd7:14640, addr family=30 sendto() unexpectedly succeeded (To reproduce this locally, replace the IPv6 address in that code with a link-local IPv6 address of an interface that is not UP on your system) Notice how the sendto() returned successfully without any error giving an impression to the application code that the message has been sent. In reality, the message isn't really sent. Here's the system logs from that run: PID Type Date & Time Process Message debug 2025-03-13 23:36:36.830147 +0530 kernel Process (a.out) allowed via dev tool environment (/System/Applications/Utilities/Terminal.app/Contents/MacOS/Terminal) debug 2025-03-13 23:36:36.833054 +0530 kernel [SPI][HIDSPI] TX: 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 RX: 20 02 00 00 00 00 38 00 10 02 00 17 00 00 2E 00 26700 error 2025-03-13 23:36:36.838607 +0530 nehelper Failed to get the signing identifier for 29290: No such process 26700 error 2025-03-13 23:36:36.838608 +0530 nehelper Failed to get the code directory hash for 29290: No such process default 2025-03-13 23:36:36.840070 +0530 kernel cfil_dispatch_attach_event:3507 CFIL: Failed to get effective audit token for <sockID 22289651233205710 <4f3051d7ec2dce>> 26700 error 2025-03-13 23:36:36.840678 +0530 nehelper Failed to get the signing identifier for 29290: No such process 26700 error 2025-03-13 23:36:36.840679 +0530 nehelper Failed to get the code directory hash for 29290: No such process default 2025-03-13 23:36:36.841742 +0530 kernel cfil_hash_entry_log:6082 <CFIL: Error: sosend_reinject() failed>: [29290 ] <UDP(17) out so 891be95f39bd0385 22289651233205710 22289651233205710 age 0> lport 60244 fport 12345 laddr fe80::34be:50ff:fe14:ecd7 faddr fe80::34be:50ff:fe14:ecd7 hash D7EC2DCE default 2025-03-13 23:36:36.841756 +0530 kernel cfil_service_inject_queue:4466 CFIL: sosend() failed 50 Notice the last line where it states the sosend() (and internal impl detail of macos) failed with error code 50, which corresponds to ENETDOWN ("Network is down"). However, like I noted, this error was never propagated back to the application from the sendto() system call. The documentation of sendto() system call states: man sendto ... Locally detected errors are indicated by a return value of -1. ... RETURN VALUES Upon successful completion, the number of bytes which were sent is returned. Otherwise, -1 is returned and the global variable errno is set to indicate the error. So I would expect sendto() to return -1, which it isn't. The 15.3.1 source of xnu hasn't yet been published but there is the 15.3 version here https://github.com/apple-oss-distributions/xnu/tree/xnu-11215.81.4 and looking at the corresponding function cfil_service_inject_queue, line 4466 (the one which is reported in the logs) https://github.com/apple-oss-distributions/xnu/blob/xnu-11215.81.4/bsd/net/content_filter.c#L4466, the code there logs this error and the cfil_service_inject_queue function then returns back the error. However, looking at the call sites of the call to cfil_service_inject_queue(...), there are several places within that file which don't track the return value (representing an error value) and just ignore it. Is that intentional and does that explain this issue? Does this deserve to be reported as a bug through feedback assistant?
2
0
416
Mar ’25
Crash on "Dispatch queue: NEFlow queue" when __88-[NEExtensionAppProxyProviderContext setInitialFlowDivertControlSocket:extraValidation:]_block_invoke.90
I observed the following crash: Code Type: ARM-64 (Native) Parent Process: launchd [1] User ID: 0 Date/Time: 2025-10-07 13:48:29.082 OS Version: macOS 15.6 (24G84) Report Version: 12 Anonymous UUID: 8B651788-4B2E-7869-516B-1DA0D60F3744 Crashed Thread: 3 Dispatch queue: NEFlow queue Exception Type: EXC_BAD_ACCESS (SIGSEGV) Exception Codes: KERN_INVALID_ADDRESS at 0x0000000000000054 ... Thread 3 Crashed: Dispatch queue: NEFlow queue 0 libdispatch.dylib 0x000000019af6da34 dispatch_async + 192 1 libnetworkextension.dylib 0x00000001b0cf8580 __flow_startup_block_invoke.216 + 124 2 com.apple.NetworkExtension 0x00000001adf97da8 __88-[NEExtensionAppProxyProviderContext setInitialFlowDivertControlSocket:extraValidation:]_block_invoke.90 + 860 3 libnetworkextension.dylib 0x00000001b0cf8140 __flow_startup_block_invoke.214 + 172 4 libdispatch.dylib 0x000000019af67b2c _dispatch_call_block_and_release + 32 5 libdispatch.dylib 0x000000019af8185c _dispatch_client_callout + 16 6 libdispatch.dylib 0x000000019af70350 _dispatch_lane_serial_drain + 740 7 libdispatch.dylib 0x000000019af70e2c _dispatch_lane_invoke + 388 8 libdispatch.dylib 0x000000019af7b264 _dispatch_root_queue_drain_deferred_wlh + 292 9 libdispatch.dylib 0x000000019af7aae8 _dispatch_workloop_worker_thread + 540 10 libsystem_pthread.dylib 0x000000019b11be64 _pthread_wqthread + 292 11 libsystem_pthread.dylib 0x000000019b11ab74 start_wqthread + 8 ... It appears that the crash is caused by the flow director queue becoming NULL when dispatch_async is called (accessing address 0x0000000000000054). Meanwhile, my transparent proxy was still running. I'm wondering if this is a known issue or if anyone else has encountered the same problem. @eskimo
2
0
443
Oct ’25