Post

Replies

Boosts

Views

Activity

Selecting GPU for TensorFlow-Metal on Mac Pro (2013) with v0.8.0
Hi everyone, I'm a Mac enthusiast experimenting with tensorflow-metal on my Mac Pro (2013). My question is about GPU selection in tensorflow-metal (v0.8.0), which still supports Intel-based Macs, including my machine. I've noticed that when running TensorFlow with Metal, it automatically selects a GPU, regardless of what I specify using device indices like "gpu:0", "gpu:1", or "gpu:2". I'm wondering if there's a way to manually specify which GPU should be used via an environment variable or another method. For reference, I’ve tried the example from TensorFlow’s guide on multi-GPU selection: https://www.tensorflow.org/guide/gpu#using_a_single_gpu_on_a_multi-gpu_system My goal is to explore performance optimizations by using MirroredStrategy in TensorFlow to leverage multiple GPUs: https://www.tensorflow.org/guide/distributed_training#mirroredstrategy Interestingly, I discovered that the metalcompute Python library (https://pypi.org/project/metalcompute/) allows to utilize manually selected GPUs on my system, allowing for proper multi-GPU computations. This makes me wonder: Is there a hidden environment variable or setting that allows manual GPU selection in tensorflow-metal? Has anyone successfully used MirroredStrategy on multiple GPUs with tensorflow-metal? Would a bridge between metalcompute and tensorflow-metal be necessary for this use case, or is there a more direct approach? I’d love to hear if anyone else has experimented with this or has insights on getting finer control over GPU selection. Any thoughts or suggestions would be greatly appreciated! Thanks!
3
0
170
Mar ’25