I'm using python 3.9.6, tensorflow 2.20.0, tensorflow-metal 1.2.0, and when I try to run
import tensorflow as tf
It gives
Traceback (most recent call last):
File "/Users/haoduoyu/Code/demo.py", line 1, in <module>
import tensorflow as tf
File "/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow/__init__.py", line 438, in <module>
_ll.load_library(_plugin_dir)
File "/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library
py_tf.TF_LoadLibrary(lib)
tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Library not loaded: @rpath/_pywrap_tensorflow_internal.so
Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/libmetal_plugin.dylib
Reason: tried: '/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file)
As long as I uninstall tensorflow-metal, nothing goes wrong. How can I fix this problem?
tensorflow-metal
RSS for tagTensorFlow accelerates machine learning model training with Metal on Mac GPUs.
Posts under tensorflow-metal tag
17 Posts
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Hello,
Are there any plans to compile a python 3.13 version of tensorflow-metal?
Just got my new Mac mini and the automatically installed version of python installed by brew is python 3.13 and while if I was in a hurry, I could manage to get python 3.12 installed and use the corresponding tensorflow-metal version but I'm not in a hurry.
Many thanks,
Alan
Also submitted as feedback (ID: FB20612561).
Tensorflow-metal fails on tensorflow versions above 2.18.1, but works fine on tensorflow 2.18.1
In a new python 3.12 virtual environment:
pip install tensorflow
pip install tensor flow-metal
python -c "import tensorflow as tf"
Prints error:
Traceback (most recent call last):
File "", line 1, in
File "/Users//pt/venv/lib/python3.12/site-packages/tensorflow/init.py", line 438, in
_ll.load_library(_plugin_dir)
File "/Users//pt/venv/lib/python3.12/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library
py_tf.TF_LoadLibrary(lib)
tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users//pt/venv/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Library not loaded: @rpath/_pywrap_tensorflow_internal.so
Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users//pt/venv/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib
Reason: tried: '/Users//pt/venv/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/Users//pt/venv/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file), '/System/Volumes/Preboot/Cryptexes/OS/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file)
Topic:
Machine Learning & AI
SubTopic:
General
Tags:
Developer Tools
Metal
Machine Learning
tensorflow-metal
Hi
We're on tensorflow 2.20 that has support now for python 3.13 (finally!). tensorflow-metal is still only supporting 2.18 which is over a year old.
When can we expect to see support in tensorflow-metal for tf 2.20 (or later!) ?
I bought a mac thinking I would be able to get great performance from the M processors but here I am using my CPU for my ML projects.
If it's taking so long to release it, why not open source it so the community can keep it more up to date?
cheers
Matt
Hi,
testing latest tensorflow-metal plugin with tensorflow 2.20 doesn't work..
using python
Python 3.12.11 (main, Jun 3 2025, 15:41:47) [Clang 17.0.0 (clang-1700.0.13.3)] on darwin
simple testing shows error:
import tensorflow as tf
Traceback (most recent call last):
File "", line 1, in
File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/init.py", line 438, in
_ll.load_library(_plugin_dir)
File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library
py_tf.TF_LoadLibrary(lib)
tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Library not loaded: @rpath/_pywrap_tensorflow_internal.so
Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib
Reason: tried: '/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file), '/System/Volumes/Preboot/Cryptexes/OS/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file)
tf.config.experimental.list_physical_devices('GPU')
Traceback (most recent call last):
File "", line 1, in
NameError: name 'tf' is not defined
I fixed this error by copying _pywrap_tensorflow_internal.so where it's searched..
1)mkdir /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64
2)mkdir /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/
3)cp /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/python/_pywrap_tensorflow_internal.so /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/
then fails symbol not found:
Symbol not found: __ZN10tensorflow28_AttrValue_default_instance_E
in libmetal_plugin.dylib
full log:
with import tensorflow as tf
Traceback (most recent call last):
File "", line 1, in
File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/init.py", line 438, in
_ll.load_library(_plugin_dir)
File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library
py_tf.TF_LoadLibrary(lib)
tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Symbol not found: __ZN10tensorflow28_AttrValue_default_instance_E
Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib
Expected in: <2FF91C8B-0CB6-3E66-96B7-092FDF36772E> /Users/obg/npu/venv-tf/lib/python3.12/site-packages/_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so
Problem:
We trained a LoRA adapter for Apple's FoundationModels framework using their TAMM (Training Adapter for Model Modification)
toolkit v0.2.0 on macOS 26 beta 4. The adapter trains successfully but fails to load with: "Adapter is not compatible with the
current system base model."
TAMM 2.0 contains export/constants.py with: BASE_SIGNATURE = "9799725ff8e851184037110b422d891ad3b92ec1"
Findings:
Adapter Export Process:
In export_fmadapter.py
def write_metadata(...):
self_dict[MetadataKeys.BASE_SIGNATURE] = BASE_SIGNATURE # Hardcoded value
The Compatibility Check:
- When loading an adapter, Apple's system compares the adapter's baseModelSignature with the current system model
- If they don't match: compatibleAdapterNotFound error
- The error doesn't reveal the expected signature
Questions:
- How is BASE_SIGNATURE derived from the base model?
- Is it SHA-1 of base-model.pt or some other computation?
- Can we compute the correct signature for beta 4?
- Or do we need Apple to release TAMM v0.3.0 with updated signature?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Tags:
Core ML
Create ML
tensorflow-metal
Apple Intelligence
Context
I trained a LoRA adapter for Apple’s on-device language model using the Foundation Models Adapter Training Toolkit v0.2.0 on macOS 26 beta 4. Although training completes successfully, loading the resulting .fmadapter package fails with:
Adapter is not compatible with the current system base model.
What I’ve Observed,
Hard-coded Signature: In export/constants.py, the toolkit sets,
BASE_SIGNATURE = "9799725ff8e851184037110b422d891ad3b92ec1"
Metadata Injection: The export_fmadapter.py script writes this value into the adapter’s metadata:
self_dict[MetadataKeys.BASE_SIGNATURE] = BASE_SIGNATURE
Compatibility Check: At runtime, the Foundation Models framework compares the adapter’s baseModelSignature against the OS’s system model signature, and reports compatibleAdapterNotFound if they don’t match—without revealing the expected signature.
Questions
Signature Generation - What exactly does the toolkit hash to derive BASE_SIGNATURE? Is it a straight SHA-1 of base-model.pt, or is there an additional transformation?
Recomputing for Beta 4 - Is there a way to locally compute the correct signature for the macOS 26 beta 4 system model?
Toolkit Updates - Will Apple release Adapter Training Toolkit v0.3.0 with an updated BASE_SIGNATURE for beta 4, or is there an alternative workaround to generate it myself?
Any guidance on how the Foundation Models framework derives and verifies the base model signature—or how to regenerate it for beta 4—would be greatly appreciated.
I’m trying to follow Apple’s “WWDC24: Bring your machine learning and AI models to Apple Silicon” session to convert the Mistral-7B-Instruct-v0.2 model into a Core ML package, but I’ve run into a roadblock that I can’t seem to overcome. I’ve uploaded my full conversion script here for reference:
https://pastebin.com/T7Zchzfc
When I run the script, it progresses through tracing and MIL conversion but then fails at the backend_mlprogram stage with this error:
https://pastebin.com/fUdEzzKM
The core of the error is:
ValueError: Op "keyCache_tmp" (op_type: identity) Input x="keyCache" expects list, tensor, or scalar but got state[tensor[1,32,8,2048,128,fp16]]
I’ve registered my KV-cache buffers in a StatefulMistralWrapper subclass of nn.Module, matching the keyCache and valueCache state names in my ct.StateType definitions, but Core ML’s backend pass reports the state tensor as an invalid input. I’m using Core ML Tools 8.3.0 on Python 3.9.6, targeting iOS18, and forcing CPU conversion (MPS wasn’t available). Any pointers on how to satisfy the handle_unused_inputs pass or properly declare/cache state for GQA models in Core ML would be greatly appreciated!
Thanks in advance for your help,
Usman Khan
Topic:
Machine Learning & AI
SubTopic:
Core ML
Tags:
Metal
Metal Performance Shaders
Core ML
tensorflow-metal
Hi everyone! 👋
I'm working on a C++ project using TensorFlow Lite and was wondering if anyone has a prebuilt TensorFlow Lite C++ library (libtensorflowlite) for macOS (Apple Silicon M1/M2) that they’d be willing to share.
I’m looking specifically for the TensorFlow Lite C++ API — something that lets me use tflite::Interpreter, tflite::FlatBufferModel, etc. Building it from source using Bazel on macOS has been quite challenging and time-consuming, so a ready-to-use .dylib or .a build along with the required headers would be incredibly helpful.
TensorFlow Lite version: v2.18.0 preferred
Target: macOS arm64 (Apple Silicon)
What I need:
libtensorflowlite.dylib or .a
Corresponding headers (ideally organized in a clean include/ folder)
If you have one available or know where I can find a reliable prebuilt version, I’d be super grateful. Thanks in advance! 🙏
From tensorflow-metal example:
Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: )
I know that Apple silicon uses UMA, and that memory copies are typical of CUDA, but wouldn't the GPU memory still be faster overall?
I have an iMac Pro with a Radeon Pro Vega 64 16 GB GPU and an Intel iMac with a Radeon Pro 5700 8 GB GPU.
But using tensorflow-metal is still WAY faster than using the CPUs. Thanks for that. I am surprised the 5700 is twice as fast as the Vega though.
Hi everyone,
I'm a Mac enthusiast experimenting with tensorflow-metal on my Mac Pro (2013). My question is about GPU selection in tensorflow-metal (v0.8.0), which still supports Intel-based Macs, including my machine.
I've noticed that when running TensorFlow with Metal, it automatically selects a GPU, regardless of what I specify using device indices like "gpu:0", "gpu:1", or "gpu:2". I'm wondering if there's a way to manually specify which GPU should be used via an environment variable or another method.
For reference, I’ve tried the example from TensorFlow’s guide on multi-GPU selection: https://www.tensorflow.org/guide/gpu#using_a_single_gpu_on_a_multi-gpu_system
My goal is to explore performance optimizations by using MirroredStrategy in TensorFlow to leverage multiple GPUs: https://www.tensorflow.org/guide/distributed_training#mirroredstrategy
Interestingly, I discovered that the metalcompute Python library (https://pypi.org/project/metalcompute/) allows to utilize manually selected GPUs on my system, allowing for proper multi-GPU computations. This makes me wonder:
Is there a hidden environment variable or setting that allows manual GPU selection in tensorflow-metal?
Has anyone successfully used MirroredStrategy on multiple GPUs with tensorflow-metal?
Would a bridge between metalcompute and tensorflow-metal be necessary for this use case, or is there a more direct approach?
I’d love to hear if anyone else has experimented with this or has insights on getting finer control over GPU selection. Any thoughts or suggestions would be greatly appreciated!
Thanks!
I've been trying to get some basic models to work on an M2 with tensor metal 1.2 and keras 2.15 and 2.18 and they all fail to work as expected.
I'm running models copy/pasted from common tutorials like Jason Brownlee ML Mastery Object Classification tutorial using CIFAR-10. When run with the GPU I can't get any reasonable results. Under keras 2.15 the best validation accuracy ends up being around 10-15%. Under keras 2.18, the validation goes off the rails around epoch 5 with wildly low accuracy and loss values that are reported as "nan".
Epoch 4/25
782/782: 19s 24ms/step - accuracy: 0.3450 - loss: 2.8925 - val_accuracy: 0.2992 - val_loss: 1.9869
Epoch 5/25
782/782: 19s 24ms/step - accuracy: 0.2553 - loss: nan - val_accuracy: 0.0000e+00 - val_loss: nan
Running the same code on the CPU using keras 2.15 using tf.config.experimental.set_visible_devices([], 'GPU') yields a reasonable result with the validation accuracy around 75% as expected. Running the same code on keras 2.15 on a linux instance with just the CPU provides similar results.
The tutorial can be found here:
https://machinelearningmastery.com/object-recognition-convolutional-neural-networks-keras-deep-learning-library/
The only places I've deviated from the provided tutorial is using
sdg = tf.keras.optimizers.legacy.SGD(learning_rate=lrate, momentum=0.9, nesterov=False)
I did this at the advice of the warning:
WARNING:absl:At this time, the v2.11+ optimizer `tf.keras.optimizers.SGD` runs slowly on M1/M2 Macs, please use the legacy Keras optimizer instead, located at `tf.keras.optimizers.legacy.SGD`.
Is there something special that I need to do to make this work? I've followed the instructions here: https://developer.apple.com/metal/tensorflow-plugin/
I've purged the venv a few times and started from scratch, but all with similarly terrible results.
Here are my platform details:
Chip: Apple M2
Memory: 16 GB
macOS : Sequoia 15.2
Python venv: 3.11
Jupyter Lab Version: 4.3.3
TensorFlow versions: 2.15, 2.18
tensorflow-metal: 1.2.0
Thanks for any assistance or advice.
Has anyone been able to run Tensorflow > 2.15 with Tensorflow Metal 1.1.0 on M3? I tried several times but was not successful. Seems like development on TensorFlow Metal has paused?
Issue type: Bug
TensorFlow metal version: 1.1.1
TensorFlow version: 2.18
OS platform and distribution: MacOS 15.2
Python version: 3.11.11
GPU model and memory: Apple M2 Max GPU 38-cores
Standalone code to reproduce the issue:
import tensorflow as tf
if __name__ == '__main__':
gpus = tf.config.experimental.list_physical_devices('GPU')
print(gpus)
Current behavior
Apple silicone GPU with tensorflow-metal==1.1.0 and python 3.11 works fine with tensorboard==2.17.0
This is normal output:
/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/bin/python /Users/mspanchenko/VSCode/cryptoNN/ml/core_second_window/test_tensorflow_gpus.py
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
Process finished with exit code 0
But if I upgrade tensorflow to 2.18 I'll have error:
/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/bin/python /Users/mspanchenko/VSCode/cryptoNN/ml/core_second_window/test_tensorflow_gpus.py
Traceback (most recent call last):
File "/Users/mspanchenko/VSCode/cryptoNN/ml/core_second_window/test_tensorflow_gpus.py", line 1, in <module>
import tensorflow as tf
File "/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow/__init__.py", line 437, in <module>
_ll.load_library(_plugin_dir)
File "/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library
py_tf.TF_LoadLibrary(lib)
tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Symbol not found: __ZN3tsl8internal10LogMessageC1EPKcii
Referenced from: <D2EF42E3-3A7F-39DD-9982-FB6BCDC2853C> /Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow-plugins/libmetal_plugin.dylib
Expected in: <2814A58E-D752-317B-8040-131217E2F9AA> /Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow/python/_pywrap_tensorflow_internal.so
Process finished with exit code 1
Hi, The most recent version of tensorflow-metal is only available for macosx 12.0 and python up to version 3.11. Is there any chance it could be updated with wheels for macos 15 and Python 3.12 (which is the default version supported for tensrofllow 2.17+)? I'd note that even downgrading to Python 3.11 would not be sufficient, as the wheels only work for macos 12.
Thanks.
I've checked on pypi.org and it appears to only have arm64 packages, has x86 with AMD been deprecated?
I am attempting to install Tensorflow on my M1 and I seem to be unable to find the correct matching versions of jax, jaxlib and numpy to make it all work.
I am in Bash, because the default shell gave me issues.
I downgraded to python 3.10, because with 3.13, I could not do anything right.
Current actions:
bash-3.2$ python3.10 -m venv ~/venv-metal
bash-3.2$ python --version
Python 3.10.16
python3.10 -m venv ~/venv-metal
source ~/venv-metal/bin/activate
python -m pip install -U pip
python -m pip install tensorflow-macos
And here, I keep running tnto errors like:
(venv-metal):~$ pip install tensorflow-macos tensorflow-metal
ERROR: Could not find a version that satisfies the requirement tensorflow-macos (from versions: none)
ERROR: No matching distribution found for tensorflow-macos
What is wrong here?
How can I fix that?
It seems like the system wants to use the x86 version of python ... which can't be right.