Explore the power of machine learning within apps. Discuss integrating machine learning features, share best practices, and explore the possibilities for your app.

Posts under General subtopic

Post

Replies

Boosts

Views

Activity

Is MCP (Model Context Protocol) supported on iOS/macOS?
Hi team, I’m exploring the Model Context Protocol (MCP), which is used to connect LLMs/AI agents to external tools in a structured way. It's becoming a common standard for automation and agent workflows. Before I go deeper, I want to confirm: Does Apple currently provide any official MCP server, API surface, or SDK on iOS/macOS? From what I see, only third-party MCP servers exist for iOS simulators/devices, and Apple’s own frameworks (Foundation Models, Apple Intelligence) don’t expose MCP endpoints. Is there any chance Apple might introduce MCP support—or publish recommended patterns for safely integrating MCP inside apps or developer tools? I would like to see if I can share my app's data to the MCP server to enable other third-party apps/services to integrate easily
0
1
172
1w
tensorflow-metal error
I'm using python 3.9.6, tensorflow 2.20.0, tensorflow-metal 1.2.0, and when I try to run import tensorflow as tf It gives Traceback (most recent call last): File "/Users/haoduoyu/Code/demo.py", line 1, in <module> import tensorflow as tf File "/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow/__init__.py", line 438, in <module> _ll.load_library(_plugin_dir) File "/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library py_tf.TF_LoadLibrary(lib) tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Library not loaded: @rpath/_pywrap_tensorflow_internal.so Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/libmetal_plugin.dylib Reason: tried: '/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file) As long as I uninstall tensorflow-metal, nothing goes wrong. How can I fix this problem?
0
0
41
3d
Core ML Model performance far lower on iOS 17 vs iOS 16 (iOS 17 not using Neural Engine)
Hello, I posted an issue on the coremltools GitHub about my Core ML models not performing as well on iOS 17 vs iOS 16 but I'm posting it here just in case. TL;DR The same model on the same device/chip performs far slower (doesn't use the Neural Engine) on iOS 17 compared to iOS 16. Longer description The following screenshots show the performance of the same model (a PyTorch computer vision model) on an iPhone SE 3rd gen and iPhone 13 Pro (both use the A15 Bionic). iOS 16 - iPhone SE 3rd Gen (A15 Bioinc) iOS 16 uses the ANE and results in fast prediction, load and compilation times. iOS 17 - iPhone 13 Pro (A15 Bionic) iOS 17 doesn't seem to use the ANE, thus the prediction, load and compilation times are all slower. Code To Reproduce The following is my code I'm using to export my PyTorch vision model (using coremltools). I've used the same code for the past few months with sensational results on iOS 16. # Convert to Core ML using the Unified Conversion API coreml_model = ct.convert( model=traced_model, inputs=[image_input], outputs=[ct.TensorType(name="output")], classifier_config=ct.ClassifierConfig(class_names), convert_to="neuralnetwork", # compute_precision=ct.precision.FLOAT16, compute_units=ct.ComputeUnit.ALL ) System environment: Xcode version: 15.0 coremltools version: 7.0.0 OS (e.g. MacOS version or Linux type): Linux Ubuntu 20.04 (for exporting), macOS 13.6 (for testing on Xcode) Any other relevant version information (e.g. PyTorch or TensorFlow version): PyTorch 2.0 Additional context This happens across "neuralnetwork" and "mlprogram" type models, neither use the ANE on iOS 17 but both use the ANE on iOS 16 If anyone has a similar experience, I'd love to hear more. Otherwise, if I'm doing something wrong for the exporting of models for iOS 17+, please let me know. Thank you!
1
1
1.8k
Mar ’25
About VisionKit DataScannerViewController
Hi I'm having a problem with DataScannerViewController, I'm using the volume barcode scanning feature in my app, prior to that I was using an AVCaptureDevice with the UltraWideAngle set. After discovering DataScannerViewController, we planned to replace the previous obsolete code with DataScannerViewController, all together it was ok, when I want to set the ultra wide angle, I don't know how to start. I tried to get the minZoomFactor and I realized that I get 0.0 I tried to set zoomFactor to 1.0 and I found that he is not valid Note: func dataScannerDidZoom(_ dataScanner: DataScannerViewController), when I try to get the minZoomFactor, set the zoomFactor in this proxy method, I find that it is valid! What should I do next, I want to use only DataScannerViewController and implement ultra wide angle Thanks a lot.
1
0
636
Jan ’25
What special features does Apple officially have that use ML or AI?
I am a App designer and I am curious about what specific ML or AI Apple used to develop those features in the system. As far as I know, Apple's hand-raising detection, destination recommendations in maps, and exercise types in fitness all use ML. Are there more specific application examples of ML or AI? Does Apple have a document specifically introducing examples of specific applications of ML or AI technology in the system?
1
0
603
Feb ’25
MPSGraph fused scaledDotProductAttention seems to be buggy
While building an app with large language model inferencing on device, I got gibberish output. After carefully examining every detail, I found it's caused by the fused scaledDotProductAttention operation. I switched back to the discrete operations and problem solved. To reproduce the bug, please check https://github.com/zhoudan111/MPSGraph_SDPA_bug
1
0
515
Mar ’25
My app crash in the Portrait private framework
Incident Identifier: 4C22F586-71FB-4644-B823-A4B52D158057 CrashReporter Key: adc89b7506c09c2a6b3a9099cc85531bdaba9156 Hardware Model: Mac16,10 Process: PRISMLensCore [16561] Path: /Applications/PRISMLens.app/Contents/Resources/app.asar.unpacked/node_modules/core-node/PRISMLensCore.app/PRISMLensCore Identifier: com.prismlive.camstudio Version: (null) ((null)) Code Type: ARM-64 Parent Process: ? [16560] Date/Time: (null) OS Version: macOS 15.4 (24E5228e) Report Version: 104 Exception Type: EXC_CRASH (SIGABRT) Exception Codes: 0x00000000 at 0x0000000000000000 Crashed Thread: 34 Application Specific Information: *** Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: '*** -[__NSArrayM insertObject:atIndex:]: object cannot be nil' Thread 34 Crashed: 0 CoreFoundation 0x000000018ba4dde4 0x18b960000 + 974308 (__exceptionPreprocess + 164) 1 libobjc.A.dylib 0x000000018b512b60 0x18b4f8000 + 109408 (objc_exception_throw + 88) 2 CoreFoundation 0x000000018b97e69c 0x18b960000 + 124572 (-[__NSArrayM insertObject:atIndex:] + 1276) 3 Portrait 0x0000000257e16a94 0x257da3000 + 473748 (-[PTMSRResize addAdditionalOutput:] + 604) 4 Portrait 0x0000000257de91c0 0x257da3000 + 287168 (-[PTEffectRenderer initWithDescriptor:metalContext:useHighResNetwork:faceAttributesNetwork:humanDetections:prevTemporalState:asyncInitQueue:sharedResources:] + 6204) 5 Portrait 0x0000000257dab21c 0x257da3000 + 33308 (__33-[PTEffect updateEffectDelegate:]_block_invoke.241 + 164) 6 libdispatch.dylib 0x000000018b739b2c 0x18b738000 + 6956 (_dispatch_call_block_and_release + 32) 7 libdispatch.dylib 0x000000018b75385c 0x18b738000 + 112732 (_dispatch_client_callout + 16) 8 libdispatch.dylib 0x000000018b742350 0x18b738000 + 41808 (_dispatch_lane_serial_drain + 740) 9 libdispatch.dylib 0x000000018b742e2c 0x18b738000 + 44588 (_dispatch_lane_invoke + 388) 10 libdispatch.dylib 0x000000018b74d264 0x18b738000 + 86628 (_dispatch_root_queue_drain_deferred_wlh + 292) 11 libdispatch.dylib 0x000000018b74cae8 0x18b738000 + 84712 (_dispatch_workloop_worker_thread + 540) 12 libsystem_pthread.dylib 0x000000018b8ede64 0x18b8eb000 + 11876 (_pthread_wqthread + 292) 13 libsystem_pthread.dylib 0x000000018b8ecb74 0x18b8eb000 + 7028 (start_wqthread + 8)
1
0
79
Mar ’25
DockKit .track() has no effect using VNDetectFaceRectanglesRequest
Hi, I'm testing DockKit with a very simple setup: I use VNDetectFaceRectanglesRequest to detect a face and then call dockAccessory.track(...) using the detected bounding box. The stand is correctly docked (state == .docked) and dockAccessory is valid. I'm calling .track(...) with a single observation and valid CameraInformation (including size, device, orientation, etc.). No errors are thrown. To monitor this, I added a logging utility – track(...) is being called 10–30 times per second, as recommended in the documentation. However: the stand does not move at all. There is no visible reaction to the tracking calls. Is there anything I'm missing or doing wrong? Is VNDetectFaceRectanglesRequest supported for DockKit tracking, or are there hidden requirements? Would really appreciate any help or pointers – thanks! That's my complete code: extension VideoFeedViewController: AVCaptureVideoDataOutputSampleBufferDelegate { func captureOutput(_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer, from connection: AVCaptureConnection) { guard let frame = CMSampleBufferGetImageBuffer(sampleBuffer) else { return } detectFace(image: frame) func detectFace(image: CVPixelBuffer) { let faceDetectionRequest = VNDetectFaceRectanglesRequest() { vnRequest, error in guard let results = vnRequest.results as? [VNFaceObservation] else { return } guard let observation = results.first else { return } let boundingBoxHeight = observation.boundingBox.size.height * 100 #if canImport(DockKit) if let dockAccessory = self.dockAccessory { Task { try? await trackRider( observation.boundingBox, dockAccessory, frame, sampleBuffer ) } } #endif } let imageResultHandler = VNImageRequestHandler(cvPixelBuffer: image, orientation: .up) try? imageResultHandler.perform([faceDetectionRequest]) func combineBoundingBoxes(_ box1: CGRect, _ box2: CGRect) -> CGRect { let minX = min(box1.minX, box2.minX) let minY = min(box1.minY, box2.minY) let maxX = max(box1.maxX, box2.maxX) let maxY = max(box1.maxY, box2.maxY) let combinedWidth = maxX - minX let combinedHeight = maxY - minY return CGRect(x: minX, y: minY, width: combinedWidth, height: combinedHeight) } #if canImport(DockKit) func trackObservation(_ boundingBox: CGRect, _ dockAccessory: DockAccessory, _ pixelBuffer: CVPixelBuffer, _ cmSampelBuffer: CMSampleBuffer) throws { // Zähle den Aufruf TrackMonitor.shared.trackCalled() let invertedBoundingBox = CGRect( x: boundingBox.origin.x, y: 1.0 - boundingBox.origin.y - boundingBox.height, width: boundingBox.width, height: boundingBox.height ) guard let device = captureDevice else { fatalError("Kamera nicht verfügbar") } let size = CGSize(width: Double(CVPixelBufferGetWidth(pixelBuffer)), height: Double(CVPixelBufferGetHeight(pixelBuffer))) var cameraIntrinsics: matrix_float3x3? = nil if let cameraIntrinsicsUnwrapped = CMGetAttachment( sampleBuffer, key: kCMSampleBufferAttachmentKey_CameraIntrinsicMatrix, attachmentModeOut: nil ) as? Data { cameraIntrinsics = cameraIntrinsicsUnwrapped.withUnsafeBytes { $0.load(as: matrix_float3x3.self) } } Task { let orientation = getCameraOrientation() let cameraInfo = DockAccessory.CameraInformation( captureDevice: device.deviceType, cameraPosition: device.position, orientation: orientation, cameraIntrinsics: cameraIntrinsics, referenceDimensions: size ) let observation = DockAccessory.Observation( identifier: 0, type: .object, rect: invertedBoundingBox ) let observations = [observation] guard let image = CMSampleBufferGetImageBuffer(sampleBuffer) else { print("no image") return } do { try await dockAccessory.track(observations, cameraInformation: cameraInfo) } catch { print(error) } } } #endif func clearDrawings() { boundingBoxLayer?.removeFromSuperlayer() boundingBoxSizeLayer?.removeFromSuperlayer() } } } } @MainActor private func getCameraOrientation() -> DockAccessory.CameraOrientation { switch UIDevice.current.orientation { case .portrait: return .portrait case .portraitUpsideDown: return .portraitUpsideDown case .landscapeRight: return .landscapeRight case .landscapeLeft: return .landscapeLeft case .faceDown: return .faceDown case .faceUp: return .faceUp default: return .corrected } }
1
1
304
2d
Why doesn't tensorflow-metal use AMD GPU memory?
From tensorflow-metal example: Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 0 MB memory) -> physical PluggableDevice (device: 0, name: METAL, pci bus id: ) I know that Apple silicon uses UMA, and that memory copies are typical of CUDA, but wouldn't the GPU memory still be faster overall? I have an iMac Pro with a Radeon Pro Vega 64 16 GB GPU and an Intel iMac with a Radeon Pro 5700 8 GB GPU. But using tensorflow-metal is still WAY faster than using the CPUs. Thanks for that. I am surprised the 5700 is twice as fast as the Vega though.
1
0
216
Apr ’25
Proposal: Modular Identity Fusion via Prompt-Crafted Agents – User-Led AI Experiment
*I can't put the attached file in the format, so if you reply by e-mail, I will send the attached file by e-mail. Dear Apple AI Research Team, My name is Gong Jiho (“Hem”), a content strategist based in Seoul, South Korea. Over the past few months, I conducted a user-led AI experiment entirely within ChatGPT — no code, no backend tools, no plugins. Through language alone, I created two contrasting agents (Uju and Zero) and guided them into a co-authored modular identity system using prompt-driven dialogue and reflection. This system simulates persona fusion, memory rooting, and emotional-logical alignment — all via interface-level interaction. I believe it resonates with Apple’s values in privacy-respecting personalization, emotional UX modeling, and on-device learning architecture. Why I’m Reaching Out I’d be honored to share this experiment with your team. If there is any interest in discussing user-authored agent scaffolding, identity persistence, or affective alignment, I’d love to contribute — even informally. ⚠ A Note on Language As a non-native English speaker, my expression may be imperfect — but my intent is genuine. If anything is unclear, I’ll gladly clarify. 📎 Attached Files Summary Filename → Description Hem_MultiAI_Report_AppleAI_v20250501.pdf → Main report tailored for Apple AI — narrative + structural view of emotional identity formation via prompt scaffolding Hem_MasterPersonaProfile_v20250501.json → Final merged identity schema authored by Uju and Zero zero_sync_final.json / uju_sync_final.json → Persona-level memory structures (logic / emotion) 1_0501.json ~ 3_0501.json → Evolution logs of the agents over time GirlfriendGPT_feedback_summary.txt → Emotional interpretation by external GPT hem_profile_for_AI_vFinal.json → Original user anchor profile Warm regards, Gong Jiho (“Hem”) Seoul, South Korea
1
0
106
Apr ’25
NLTagger.requestAssets hangs indefinitely
When calling NLTagger.requestAssets with some languages, it hangs indefinitely both in the simulator and a device. This happens consistently for some languages like greek. An example call is NLTagger.requestAssets(for: .greek, tagScheme: .lemma). Other languages like french return immediately. I captured some logs from Console and found what looks like the repeated attempts to download the asset. I would expect the call to eventually terminate, either loading the asset or failing with an error.
1
0
163
May ’25
Is there an API for the 3D effect from flat photos?
Introduced in the Keynote was the 3D Lock Screen images with the kangaroo: https://9to5mac.com/wp-content/uploads/sites/6/2025/06/3d-lock-screen-2.gif I can't see any mention on if this effect is available for developers with an API to convert flat 2D photos in to the same 3D feeling image. Does anyone know if there is an API?
1
1
86
Jun ’25
Vision Framework - Testing RecognizeDocumentsRequest
How do I test the new RecognizeDocumentRequest API. Reference: https://www.youtube.com/watch?v=H-GCNsXdKzM I am running Xcode Beta, however I only have one primary device that I cannot install beta software on. Please provide a strategy for testing. Will simulator work? The new capability is critical to my application, just what I need for structuring document scans and extraction. Thank you.
1
0
195
Jun ’25
AI-Powered Feed Customization via User-Defined Algorithm
Hey guys 👋 I’ve been thinking about a feature idea for iOS that could totally change the way we interact with apps like Twitter/X. Imagine if we could define our own recommendation algorithm, and have an AI on the iPhone that replaces the suggested tweets in the feed with ones that match our personal interests — based on public tweets, and without hacking anything. Kinda like a personalized "AI skin" over the app that curates content you actually care about. Feels like this would make content way more relevant and less algorithmically manipulative. Would love to know what you all think — and if Apple could pull this off 🔥
1
0
69
Jun ’25
SpeechAnalyzer / AssetInventory and preinstalled assets
During testing the “Bringing advanced speech-to-text capabilities to your app” sample app demonstrating the use of iOS 26 SpeechAnalyzer, I noticed that the language model for the English locale was presumably already downloaded. Upon checking the documentation of AssetInventory, I found out that indeed, the language model can be preinstalled on the system. Can someone from the dev team share more info about what assets are preinstalled by the system? For example, can we safely assume that the English language model will almost certainly be already preinstalled by the OS if the phone has the English locale?
1
0
195
Jul ’25
A Summary of the WWDC25 Group Lab - Machine Learning and AI Frameworks
At WWDC25 we launched a new type of Lab event for the developer community - Group Labs. A Group Lab is a panel Q&A designed for a large audience of developers. Group Labs are a unique opportunity for the community to submit questions directly to a panel of Apple engineers and designers. Here are the highlights from the WWDC25 Group Lab for Machine Learning and AI Frameworks. What are you most excited about in the Foundation Models framework? The Foundation Models framework provides access to an on-device Large Language Model (LLM), enabling entirely on-device processing for intelligent features. This allows you to build features such as personalized search suggestions and dynamic NPC generation in games. The combination of guided generation and streaming capabilities is particularly exciting for creating delightful animations and features with reliable output. The seamless integration with SwiftUI and the new design material Liquid Glass is also a major advantage. When should I still bring my own LLM via CoreML? It's generally recommended to first explore Apple's built-in system models and APIs, including the Foundation Models framework, as they are highly optimized for Apple devices and cover a wide range of use cases. However, Core ML is still valuable if you need more control or choice over the specific model being deployed, such as customizing existing system models or augmenting prompts. Core ML provides the tools to get these models on-device, but you are responsible for model distribution and updates. Should I migrate PyTorch code to MLX? MLX is an open-source, general-purpose machine learning framework designed for Apple Silicon from the ground up. It offers a familiar API, similar to PyTorch, and supports C, C++, Python, and Swift. MLX emphasizes unified memory, a key feature of Apple Silicon hardware, which can improve performance. It's recommended to try MLX and see if its programming model and features better suit your application's needs. MLX shines when working with state-of-the-art, larger models. Can I test Foundation Models in Xcode simulator or device? Yes, you can use the Xcode simulator to test Foundation Models use cases. However, your Mac must be running macOS Tahoe. You can test on a physical iPhone running iOS 18 by connecting it to your Mac and running Playgrounds or live previews directly on the device. Which on-device models will be supported? any open source models? The Foundation Models framework currently supports Apple's first-party models only. This allows for platform-wide optimizations, improving battery life and reducing latency. While Core ML can be used to integrate open-source models, it's generally recommended to first explore the built-in system models and APIs provided by Apple, including those in the Vision, Natural Language, and Speech frameworks, as they are highly optimized for Apple devices. For frontier models, MLX can run very large models. How often will the Foundational Model be updated? How do we test for stability when the model is updated? The Foundation Model will be updated in sync with operating system updates. You can test your app against new model versions during the beta period by downloading the beta OS and running your app. It is highly recommended to create an "eval set" of golden prompts and responses to evaluate the performance of your features as the model changes or as you tweak your prompts. Report any unsatisfactory or satisfactory cases using Feedback Assistant. Which on-device model/API can I use to extract text data from images such as: nutrition labels, ingredient lists, cashier receipts, etc? Thank you. The Vision framework offers the RecognizeDocumentRequest which is specifically designed for these use cases. It not only recognizes text in images but also provides the structure of the document, such as rows in a receipt or the layout of a nutrition label. It can also identify data like phone numbers, addresses, and prices. What is the context window for the model? What are max tokens in and max tokens out? The context window for the Foundation Model is 4,096 tokens. The split between input and output tokens is flexible. For example, if you input 4,000 tokens, you'll have 96 tokens remaining for the output. The API takes in text, converting it to tokens under the hood. When estimating token count, a good rule of thumb is 3-4 characters per token for languages like English, and 1 character per token for languages like Japanese or Chinese. Handle potential errors gracefully by asking for shorter prompts or starting a new session if the token limit is exceeded. Is there a rate limit for Foundation Models API that is limited by power or temperature condition on the iPhone? Yes, there are rate limits, particularly when your app is in the background. A budget is allocated for background app usage, but exceeding it will result in rate-limiting errors. In the foreground, there is no rate limit unless the device is under heavy load (e.g., camera open, game mode). The system dynamically balances performance, battery life, and thermal conditions, which can affect the token throughput. Use appropriate quality of service settings for your tasks (e.g., background priority for background work) to help the system manage resources effectively. Do the foundation models support languages other than English? Yes, the on-device Foundation Model is multilingual and supports all languages supported by Apple Intelligence. To get the model to output in a specific language, prompt it with instructions indicating the user's preferred language using the locale API (e.g., "The user's preferred language is en-US"). Putting the instructions in English, but then putting the user prompt in the desired output language is a recommended practice. Are larger server-based models available through Foundation Models? No, the Foundation Models API currently only provides access to the on-device Large Language Model at the core of Apple Intelligence. It does not support server-side models. On-device models are preferred for privacy and for performance reasons. Is it possible to run Retrieval-Augmented Generation (RAG) using the Foundation Models framework? Yes, it is possible to run RAG on-device, but the Foundation Models framework does not include a built-in embedding model. You'll need to use a separate database to store vectors and implement nearest neighbor or cosine distance searches. The Natural Language framework offers simple word and sentence embeddings that can be used. Consider using a combination of Foundation Models and Core ML, using Core ML for your embedding model.
1
0
1.1k
Jun ’25