I get the following error when running this command in a Jupyter notebook:
v = tf.Variable(initial_value=tf.random.normal(shape=(3, 1)))
v[0, 0].assign(3.)
Environment:
python == 3.11.14
tensorflow==2.19.1
tensorflow-metal==1.2.0
{
"name": "InvalidArgumentError",
"message": "Cannot assign a device for operation ResourceStridedSliceAssign: Could not satisfy explicit device specification '/job:localhost/replica:0/task:0/device:GPU:0' because no supported kernel for GPU devices is available.\nColocation Debug Info:\nColocation group had the following types and supported devices: \nRoot Member(assigned_device_name_index_=1 requested_device_name_='/job:localhost/replica:0/task:0/device:GPU:0' assigned_device_name_='/job:localhost/replica:0/task:0/device:GPU:0' resource_device_name_='/job:localhost/replica:0/task:0/device:GPU:0' supported_device_types_=[CPU] possible_devices_=[]\nResourceStridedSliceAssign: CPU \n_Arg: GPU CPU \n\nColocation members, user-requested devices, and framework assigned devices, if any:\n ref (_Arg) framework assigned device=/job:localhost/replica:0/task:0/device:GPU:0\n ResourceStridedSliceAssign (ResourceStridedSliceAssign) /job:localhost/replica:0/task:0/device:GPU:0\n\nOp: ResourceStridedSliceAssign\n
[...]
[[{{node ResourceStridedSliceAssign}}]] [Op:ResourceStridedSliceAssign] name: strided_slice/_assign"
}
It seems like the ResourceStridedSliceAssign operation is not implemented for the GPU
General
RSS for tagExplore the power of machine learning within apps. Discuss integrating machine learning features, share best practices, and explore the possibilities for your app.
Selecting any option will automatically load the page