I am using Foundation Models for the first time and no response is being provided to me.
Code
import Playgrounds
import FoundationModels
#Playground {
let session = LanguageModelSession()
let result = try await session.respond(to: "List all the states in the USA")
print(result.content)
}
Canvas Output
What I did
New file
Code
Canvas refreshes but nothing happens
Am I missing a step or setup here? Please help. Something so basic is not working I do not know what to do.
Running 40GPU, 16CPU MacBook Pro.. IOS26/Xcodebeta2/Tahoe allocated 8CPU, 48GB memory in Parallels VM.
Settings for Playgrounds in Xcode
Thank you for your help in advance.
Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Hello folks! Taking a look at https://developer.apple.com/documentation/foundationmodels it’s not clear how to use another models there.
Do anyone knows if it’s possible use one trained model from outside (imported) here in foundation models framework?
Thanks!
Hi all, I'm tuning my app prediction speed with Core ML model. I watched and tried the methods in video: Improve Core ML integration with async prediction and Optimize your Core ML usage. I also use instruments to look what's the bottleneck that my prediction speed cannot be faster.
Below is the instruments result with my app. its prediction duration is 10.29ms
And below is performance report shows the average speed of prediction is 5.55ms, that is about half time of my app prediction!
Below is part of my instruments records. I think the prediction should be considered quite frequent. Could it be faster?
How to be the same prediction speed as performance report? The prediction speed on macbook Pro M2 is nearly the same as macbook Air M1!
My iOS app supports iOS 18, and I’m using an encrypted CoreML model secured with a key generated from Xcode.
Every few months (around every 3 months), the encrypted model fails to load for both me and my users. When I investigate, I find this error:
coreml Fetching decryption key from server failed: noEntryFound("No records found"). Make sure the encryption key was generated with correct team ID
To temporarily fix it, I delete the old key, generate a new one, re-encrypt the model, and submit an app update. This resolves the issue, but only for a while.
This is a terrible experience for users and obviously not a sustainable solution.
I want to understand:
Why is this happening?
Is there a known expiration or invalidation policy for CoreML encryption keys?
How can I prevent this issue permanently?
Any insights or official guidance would be really appreciated.
Has anyone been able to run Tensorflow > 2.15 with Tensorflow Metal 1.1.0 on M3? I tried several times but was not successful. Seems like development on TensorFlow Metal has paused?
When I try to run visionOS 26 beta 2 on my device the app crashes on Launch:
dyld[904]: Symbol not found: _$s16FoundationModels10TranscriptV7entriesACSayAC5EntryOG_tcfC
Referenced from: <A71932DD-53EB-39E2-9733-32E9D961D186> /private/var/containers/Bundle/Application/53866099-99B1-4BBD-8C94-CD022646EB5D/VisionPets.app/VisionPets.debug.dylib
Expected in: <F68A7984-6B48-3958-A48D-E9F541868C62> /System/Library/Frameworks/FoundationModels.framework/FoundationModels
Symbol not found: _$s16FoundationModels10TranscriptV7entriesACSayAC5EntryOG_tcfC
Referenced from: <A71932DD-53EB-39E2-9733-32E9D961D186> /private/var/containers/Bundle/Application/53866099-99B1-4BBD-8C94-CD022646EB5D/VisionPets.app/VisionPets.debug.dylib
Expected in: <F68A7984-6B48-3958-A48D-E9F541868C62> /System/Library/Frameworks/FoundationModels.framework/FoundationModels
dyld config: DYLD_LIBRARY_PATH=/usr/lib/system/introspection DYLD_INSERT_LIBRARIES=/usr/lib/libLogRedirect.dylib:/usr/lib/libBacktraceRecording.dylib:/usr/lib/libMainThreadChecker.dylib:/usr/lib/libViewDebuggerSupport.dylib:/System/Library/PrivateFrameworks/GPUToolsCapture.framework/GPUToolsCapture
Symbol not found: _$s16FoundationModels10TranscriptV7entriesACSayAC5EntryOG_tcfC
Referenced from: <A71932DD-53EB-39E2-9733-32E9D961D186> /private/var/containers/Bundle/Application/53866099-99B1-4BBD-8C94-CD022646EB5D/VisionPets.app/VisionPets.debug.dylib
Expected in: <F68A7984-6B48-3958-A48D-E9F541868C62> /System/Library/Frameworks/FoundationModels.framework/FoundationModels
dyld config: DYLD_LIBRARY_PATH=/usr/lib/system/introspection DYLD_INSERT_LIBRARIES=/usr/lib/libLogRedirect.dylib:/usr/lib/libBacktraceRecording.dylib:/usr/lib/libMainThreadChecker.dylib:/usr/lib/libViewDebuggerSupport.dylib:/System/Library/PrivateFrameworks/GPUToolsCapture.framework/GPUToolsCapture
Message from debugger: Terminated due to signal 6
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Here's the result:
Very weird.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
In working with Apple's foundation models, we often want to provide as much context as possible. However, since the model has a context size limit of 4096 tokens, is there a way to estimate the number of tokens beforehand?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I'm experimenting with downloading an audio file of spoken content, using the Speech framework to transcribe it, then using FoundationModels to clean up the formatting to add paragraph breaks and such. I have this code to do that cleanup:
private func cleanupText(_ text: String) async throws -> String? {
print("Cleaning up text of length \(text.count)...")
let session = LanguageModelSession(instructions: "The content you read is a transcription of a speech. Separate it into paragraphs by adding newlines. Do not modify the content - only add newlines.")
let response = try await session.respond(to: .init(text), generating: String.self)
return response.content
}
The content length is about 29,000 characters. And I get this error:
InferenceError::inferenceFailed::Failed to run inference: Context length of 4096 was exceeded during singleExtend..
Is 4096 a reference to a max input length? Or is this a bug?
This is running on an M1 iPad Air, with iPadOS 26 Seed 1.
Hi,
I'm working with vision framework to detect barcodes. I tested both ean13 and data matrix detection and both are working fine except for the QuadrilateralProviding values in the returned BarcodeObservation. TopLeft, topRight, bottomRight and bottomLeft coordinates are rotated 90° counter clockwise (physical bottom left of data Matrix, the corner of the "L" is returned as the topLeft point in observation). The same behaviour is happening with EAN13 Barcode.
Did someone else experienced the same issue with orientation? Is it normal behaviour or should we expect a fix in next releases of the Vision Framework?
I've run into an issue with a small Foundation Models test with Generable. I'm getting a strange error message with this Generable. I was able to get simpler ones to work.
Is this because the Generable is recursive with a property of [HTMLDiv]?
The error message is:
FoundationModels/SchemaAugmentor.swift:209: Fatal error: 'try!' expression unexpectedly raised an error: FoundationModels.GenerationSchema.SchemaError.undefinedReferences(schema: Optional("SafeResponse<HTMLDiv>"), references: ["HTMLDiv"], context: FoundationModels.GenerationSchema.SchemaError.Context(debugDescription: "Undefined types: [HTMLDiv]", underlyingErrors: []))
The code is:
import FoundationModels
import Playgrounds
@Generable
struct HTMLDiv {
@Guide(description: "Optional named ID, useful for nicknames")
var id: String? = nil
@Guide(description: "Optional visible HTML text")
var textContent: String? = nil
@Guide(description: "Any child elements", .count(0...10))
var children: [HTMLDiv] = []
static var sample: HTMLDiv {
HTMLDiv(
id: "profileToolbar",
children: [
HTMLDiv(textContent: "Log in"),
HTMLDiv(textContent: "Sign up"),
]
)
}
}
#Playground {
do {
let session = LanguageModelSession {
"Your job is to generate simple HTML markup"
"Here is an example response to the prompt: 'Make a profile toolbar':"
HTMLDiv.sample
}
let response = try await session.respond(
to: "Make a sign up form",
generating: HTMLDiv.self
)
print(response.content)
} catch {
print(error)
}
}
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I am watching a few WWDC sessions on Foundation Model and its usage and it looks pretty cool.
I was wondering if it is possible to perform RAG on the user documents on the devices and entuallly on iCloud...
Let's say I have a lot of pages documents about me and I want the Foundation model to access those information on the documents to answer questions about me that can be retrieved from the documents.
How can this be done ?
Thanks
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I'm using Xcode 26 Beta 5 and get errors on any generation I try, however harmless, when wrapped in the #Playground macro.
#Playground {
let session = LanguageModelSession()
let topic = "pandas"
let prompt = "Write a safe and respectful story about (topic)."
let response = try await session.respond(to: prompt)
Not seeing any issues on simulator or device. Anyone else seeing this or have any ideas?
Thanks for any help!
Version 26.0 beta 5 (17A5295f)
macOS 26.0 Beta (25A5316i)
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I'm interested in using Foundation Models to act as an AI support agent for our extensive in-app documentation. We have many pages of in-app documents, which the user can currently search, but it would be great to use Foundation Models to let the user get answers to arbitrary questions.
Is this possible with the current version of Foundation Models? It seems like the way to add new context to the model is with the instructions parameter on LanguageModelSession. As I understand it, the combined instructions and prompt need to consume less than 4096 tokens.
That definitely wouldn't be enough for the amount of documentation I want the agent to be able to refer to. Is there another way of doing this, maybe as a series of recursive queries? If there is a solution based on multiple queries, should I expect this to be fast enough for interactive use?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hello,
Are there any plans to compile a python 3.13 version of tensorflow-metal?
Just got my new Mac mini and the automatically installed version of python installed by brew is python 3.13 and while if I was in a hurry, I could manage to get python 3.12 installed and use the corresponding tensorflow-metal version but I'm not in a hurry.
Many thanks,
Alan
Hi everyone,
I’m an AI engineer working on autonomous AI agents and exploring ways to integrate them into the Apple ecosystem, especially via Siri and Apple Intelligence.
I was impressed by Apple’s integration of ChatGPT and its privacy-first design, but I’m curious to know:
• Are there plans to support third-party LLMs?
• Could Siri or Apple Intelligence call external AI agents or allow extensions to plug in alternative models for reasoning, scheduling, or proactive suggestions?
I’m particularly interested in building event-driven, voice-triggered workflows where Apple Intelligence could act as a front-end for more complex autonomous systems (possibly local or cloud-based).
This kind of extensibility would open up incredible opportunities for personalized, privacy-friendly use cases — while aligning with Apple’s system architecture.
Is anything like this on the roadmap? Or is there a suggested way to prototype such integrations today?
Thanks in advance for any thoughts or pointers!
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
Tags:
SiriKit
Machine Learning
Apple Intelligence
In the name of God, please allow initializing GeneratedContent from an array of key-value pairs. It’s literally the same thing KeyValuePairs uses internally, but it would let us initialize structure-like GeneratedContent from dynamic data without resorting to unsafeBitCast hacks.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Trying the Foundation Model framework and when I try to run several sessions in a loop, I'm getting a thrown error that I'm hitting a rate limit.
Are these rate limits documented? What's the best practice here?
I'm trying to run the models against new content downloaded from a web service where I might get ~200 items in a given download. They're relatively small but there can be that many that want to be processed in a loop.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I am excited to try Foundation Models during WWDC, but it doesn't work at all for me. When running on my iPad Pro M4 with iPadOS 26 seed 1, I get the following error even when running the simplest query:
let prompt = "How are you?"
let stream = session.streamResponse(to: prompt)
for try await partial in stream {
self.answer = partial
self.resultString = partial
}
In the Xcode console, I see the following error:
assetsUnavailable(FoundationModels.LanguageModelSession.GenerationError.Context(debugDescription: "Model is unavailable", underlyingErrors: []))
I have verified that Apple Intelligence is enabled on my iPad. Any tips on how can I get it working? I have also submitted this feedback: FB17896752
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I am using a contact tool to help get contact from my address book. but the model ins't invoking my tool call method. Even tried with a simple tool the outcome is the same my simple tool is not being invoked.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models