I am follwing this tutorial:
https://apple.github.io/coremltools/docs-guides/source/convert-a-torchvision-model-from-pytorch.html
I have obtained simialr result using the python code.
However when I view it in Xcode, the preview prediction percentage confidence is way off I suspect it is due the the output of the model, which is in percentage already and in Xcode it multiply 100 again leading to this result. Please give me any feedback to fix this, thank you.
Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Hi everyone 👋
I'd like to use coremltools to see how well a model performs on a remote device as part of a CI/CD pipeline. According to the Core ML Tools "Debugging and Performance Utilities" guide, remote devices must be in a "connected" state in order for coremltools to install the ModelRunner application.
The devices in our system have a "paired" state, and I'm unable to set the them as "connected." The only way I know how to connect a device is to physically plug it in to a computer and open Xcode. I don't have physical access to the devices in the CI/CD system, and the host computer that interacts with them doesn't have Xcode installed.
Here are some questions I've been looking into and would love some help answering:
Has anyone managed to use the coremltools performance utilities in a similar system?
Can you put a device in a "connected" state if you don't have physical access to the device and if you only have access to Xcode command line tools and not the Xcode app?
Is it at all possible to install the coremltools ModelRunner application on a "paired" device, for example, by manually building the app and installing it with devicectl? Would other utilities, such as the MLModelBenchmarker work as expected if the app is installed this way?
Thank you!
I have been able to train an adapter on Google's Colaboratory.
I am able to start a LanguageModelSession and load it with my adapter.
The problem is that after one simple prompt, the context window is 90% full.
If I start the session without the adapter, the same simple prompt consumes only 1% of the context window.
Has anyone encountered this? I asked Claude AI and it seems to think that my training script needs adjusting. Grok on the other hand is (wrongly, I tried) convinced that I just need to tweak some parameters of LanguageModelSession or SystemLanguageModel.
Thanks for any tips.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hello, I have to create an app in Swift that it scan NFC Identity card. It extract data and convert it to human readable data. I do it with below code
import CoreNFC
class NFCIdentityCardReader: NSObject , NFCTagReaderSessionDelegate {
func tagReaderSessionDidBecomeActive(_ session: NFCTagReaderSession) {
print("\(session.description)")
}
func tagReaderSession(_ session: NFCTagReaderSession, didInvalidateWithError error: any Error) {
print("NFC Error: \(error.localizedDescription)")
}
var session: NFCTagReaderSession?
func beginScanning() {
guard NFCTagReaderSession.readingAvailable else {
print("NFC is not supported on this device")
return
}
session = NFCTagReaderSession(pollingOption: .iso14443, delegate: self, queue: nil)
session?.alertMessage = "Hold your NFC identity card near the device."
session?.begin()
}
func tagReaderSession(_ session: NFCTagReaderSession, didDetect tags: [NFCTag]) {
guard let tag = tags.first else {
session.invalidate(errorMessage: "No tag detected")
return
}
session.connect(to: tag) { (error) in
if let error = error {
session.invalidate(errorMessage: "Connection error: \(error.localizedDescription)")
return
}
switch tag {
case .miFare(let miFareTag):
self.readMiFareTag(miFareTag, session: session)
case .iso7816(let iso7816Tag):
self.readISO7816Tag(iso7816Tag, session: session)
case .iso15693, .feliCa:
session.invalidate(errorMessage: "Unsupported tag type")
@unknown default:
session.invalidate(errorMessage: "Unknown tag type")
}
}
}
private func readMiFareTag(_ tag: NFCMiFareTag, session: NFCTagReaderSession) {
// Read from MiFare card, assuming it's formatted as an identity card
let command: [UInt8] = [0x30, 0x04] // Example: Read command for block 4
let requestData = Data(command)
tag.sendMiFareCommand(commandPacket: requestData) { (response, error) in
if let error = error {
session.invalidate(errorMessage: "Error reading MiFare: \(error.localizedDescription)")
return
}
let readableData = String(data: response, encoding: .utf8) ?? response.map { String(format: "%02X", $0) }.joined()
session.alertMessage = "ID Card Data: \(readableData)"
session.invalidate()
}
}
private func readISO7816Tag(_ tag: NFCISO7816Tag, session: NFCTagReaderSession) {
let selectAppCommand = NFCISO7816APDU(instructionClass: 0x00, instructionCode: 0xA4, p1Parameter: 0x04, p2Parameter: 0x00, data: Data([0xA0, 0x00, 0x00, 0x02, 0x47, 0x10, 0x01]), expectedResponseLength: -1)
tag.sendCommand(apdu: selectAppCommand) { (response, sw1, sw2, error) in
if let error = error {
session.invalidate(errorMessage: "Error reading ISO7816: \(error.localizedDescription)")
return
}
let readableData = response.map { String(format: "%02X", $0) }.joined()
session.alertMessage = "ID Card Data: \(readableData)"
session.invalidate()
}
}
}
But I got null. I think that these data are encrypted. How can I convert them to readable data without MRZ, is it possible ?
I need to get personal informations from Identity card via Core NFC.
Thanks in advance.
Best regards
Hello,
I am interested in using jax-metal to train ML models using Apple Silicon. I understand this is experimental.
After installing jax-metal according to https://developer.apple.com/metal/jax/, my python code fails with the following error
JaxRuntimeError: UNKNOWN: -:0:0: error: unknown attribute code: 22
-:0:0: note: in bytecode version 6 produced by: StableHLO_v1.12.1
My issue is identical to the one reported here https://github.com/jax-ml/jax/issues/26968#issuecomment-2733120325, and is fixed by pinning to jax-metal 0.1.1., jax 0.5.0 and jaxlib 0.5.0.
Thank you!
Hi team,
We have implemented a writing tool inside a WebView that allows users to type content in a textarea. When the "Show Writing Tools" button is clicked, an AI-powered editor opens. After clicking the "Rewrite" button, the AI modifies the text. However, when clicking the "Replace" button, the rewritten text does not update the original textarea.
Kindly check and help me
showButton.addTarget(self, action: #selector(showWritingTools(_:)), for: .touchUpInside)
@available(iOS 18.2, *)
optional func showWritingTools(_ sender: Any)
Note:
same cases working in TextView
pfa
I am attempting to install Tensorflow on my M1 and I seem to be unable to find the correct matching versions of jax, jaxlib and numpy to make it all work.
I am in Bash, because the default shell gave me issues.
I downgraded to python 3.10, because with 3.13, I could not do anything right.
Current actions:
bash-3.2$ python3.10 -m venv ~/venv-metal
bash-3.2$ python --version
Python 3.10.16
python3.10 -m venv ~/venv-metal
source ~/venv-metal/bin/activate
python -m pip install -U pip
python -m pip install tensorflow-macos
And here, I keep running tnto errors like:
(venv-metal):~$ pip install tensorflow-macos tensorflow-metal
ERROR: Could not find a version that satisfies the requirement tensorflow-macos (from versions: none)
ERROR: No matching distribution found for tensorflow-macos
What is wrong here?
How can I fix that?
It seems like the system wants to use the x86 version of python ... which can't be right.
Does anyone know if ExecuTorch is officially supported or has been successfully used on visionOS? If so, are there any specific build instructions, example projects, or potential issues (like sandboxing or memory limitations) to be aware of when integrating it into an Xcode project for the Vision Pro?
While ExecuTorch has support for iOS, I can't find any official documentation or community examples specifically mentioning visionOS.
Thanks.
Hello everyone,
I’m looking for guidance regarding my app review timeline, as things seem unusually delayed compared to previous submissions.
My iOS app was rejected on November 19th due to AI-related policy questions.
I immediately responded to the reviewer with detailed explanations covering:
Model used (Gemini Flash 2.0 / 2.5 Lite)
How the AI only generates neutral, non-directive reflective questions
How the system prevents any diagnosis, therapy-like behavior or recommendations
Crisis-handling limitations
Safety safeguards at generation and UI level
Internal red-team testing and results
Data retention, privacy, and non-use of data for model training
After sending the requested information, I resubmitted the build on November 19th at 14:40.
Since then:
November 20th (7:30) → Status changed to In Review.
November 21st, 22nd, 23rd, 24th, 25th → No movement, still In Review.
My open case on App Store Connect is still pending without updates.
Because of the previous rejection, I expected a short delay, but this is now 5 days total and 3 business days with no progress, which feels longer than usual for my past submissions.
I’m not sure whether:
My app is in a secondary review queue due to the AI-related rejection,
The reviewer is waiting for internal clarification,
Or if something is stuck and needs to be escalated.
I don’t want to resubmit a new build unless necessary, since that would restart the queue.
Could someone from the community (or Apple, if possible) confirm whether this waiting time is normal after an AI-policy rejection?
And is there anything I should do besides waiting — for example, contacting Developer Support again or requesting a follow-up?
Thank you very much for your help. I appreciate any insight from others who have experienced similar delays.
Is it possible to train a model using CreateML to infer a relevance numeric score of a news article based on similar trained data, something like a sentiment score ? I created a Text Classifier that assigns a category label which works perfect but I would like a solution that calculates a numeric value, not a label.
Topic:
Machine Learning & AI
SubTopic:
Create ML
Using highly optimized Metal Shading Language (MSL) code, I pushed the MacBook Air M2 to its performance limits with the deformable_attention_universal kernel. The results demonstrate both the efficiency of the code and the exceptional power of Apple Silicon.
The total computational workload exceeded 8.455 quadrillion FLOPs, equivalent to processing 8,455 trillion operations. On average, the code sustained a throughput of 85.37 TFLOPS, showcasing the chip’s remarkable ability to handle massive workloads. Peak instantaneous performance reached approximately 673.73 TFLOPS, reflecting near-optimal utilization of the GPU cores.
Despite this intensity, the cumulative GPU runtime remained under 100 seconds, highlighting the code’s efficiency and time optimization. The fastest iteration achieved a record processing time of only 0.051 ms, demonstrating minimal bottlenecks and excellent responsiveness.
Memory management was equally impressive: peak GPU memory usage never exceeded 2 MB, reflecting efficient use of the M2’s Unified Memory. This minimizes data transfer overhead and ensures smooth performance across repeated workloads.
Overall, these results confirm that a well-optimized Metal implementation can unlock the full potential of Apple Silicon, delivering exceptional computational density, processing speed, and memory efficiency. The MacBook Air M2, often considered an energy-efficient consumer laptop, is capable of handling highly intensive workloads at performance levels typically expected from much larger GPUs. This test validates both the robustness of the Metal code and the extraordinary capabilities of the M2 chip for high-performance computing tasks.
Apologies if this is obvious to everyone but me... I'm using the Tahoe AI foundation models. When I get an error, I'm trying to handle it properly.
I see the errors described here: https://developer.apple.com/documentation/foundationmodels/languagemodelsession/generationerror/context, as well as in the headers. But all I can figure out how to see is error.localizedDescription which doesn't give me much to go on.
For example, an error's description is:
The operation couldn’t be completed. (FoundationModels.LanguageModelSession.GenerationError error 2.
That doesn't give me much to go on. How do I get the actual error number/enum value out of this, short of parsing that text to look for the int at the end?
This one is:
case guardrailViolation(LanguageModelSession.GenerationError.Context)
So I'd like to know how to get from the catch for session.respond to something I can act on. I feel like it's there, but I'm missing it.
Thanks!
I'm downloading a fine-tuned model from HuggingFace which is then cached on my Mac when the app first starts. However, I wanted to test adding a progress bar to show the download progress. To test this I need to delete the cached model. From what I've seen online this is cached at
/Users/userName/.cache/huggingface/hub
However, if I delete the files from here, using Terminal, the app still seems to be able to access the model.
Is the model cached somewhere else?
On my iPhone it seems deleting the app also deletes the cached model (app data) so that is useful.
The WWDC25: Explore large language models on Apple silicon with MLX video talks about using your own data to fine-tune a large language model. But the video doesn't explain what kind of data can be used. The video just shows the command to use and how to point to the data folder. Can I use PDFs, Word documents, Markdown files to train the model? Are there any code examples on GitHub that demonstrate how to do this?
Hi all, I'm tuning my app prediction speed with Core ML model. I watched and tried the methods in video: Improve Core ML integration with async prediction and Optimize your Core ML usage. I also use instruments to look what's the bottleneck that my prediction speed cannot be faster.
Below is the instruments result with my app. its prediction duration is 10.29ms
And below is performance report shows the average speed of prediction is 5.55ms, that is about half time of my app prediction!
Below is part of my instruments records. I think the prediction should be considered quite frequent. Could it be faster?
How to be the same prediction speed as performance report? The prediction speed on macbook Pro M2 is nearly the same as macbook Air M1!
I am trying to create a Pipeline with 3 sub-models: a Feature Vectorizer -> a NN regressor converted from PyTorch -> a Feature Extractor (to convert the output tensor to a Double value).
The pipeline works fine when I use just a Vectorizer and an Extractor, this is the code:
vectorizer = models.feature_vectorizer.create_feature_vectorizer(
input_features=["windSpeed", "theoreticalPowerCurve", "windDirection"], # Multiple input features
output_feature_name="input"
)
preProc_spec = vectorizer[0]
ct.utils.convert_double_to_float_multiarray_type(preProc_spec)
extractor = models.array_feature_extractor.create_array_feature_extractor(
input_features=[("input",datatypes.Array(3,))], # Multiple input features
output_name="output",
extract_indices = 1
)
ct.utils.convert_double_to_float_multiarray_type(extractor)
pipeline_network = pipeline.PipelineRegressor (
input_features = ["windSpeed", "theoreticalPowerCurve", "windDirection"],
output_features=["output"]
)
pipeline_network.add_model(preProc_spec)
pipeline_network.add_model(extractor)
ct.utils.convert_double_to_float_multiarray_type(pipeline_network.spec)
ct.utils.save_spec(pipeline_network.spec,"Final.mlpackage")
This model works ok. I created a regression NN using PyTorch and converted to Core ML either
import torch
import torch.nn as nn
class TurbinePowerModel(nn.Module):
def __init__(self):
super().__init__()
self.linear1 = nn.Linear(3, 4)
self.activation1 = nn.ReLU()
#self.linear2 = nn.Linear(5, 4)
#self.activation2 = nn.ReLU()
self.output = nn.Linear(4, 1)
def forward(self, x):
#x = F.normalize(x, dim = 0)
x = self.linear1(x)
x = self.activation1(x)
# x = self.linear2(x)
# x = self.activation2(x)
x = self.output(x)
return x
def forward_inference(self, windSpeed,theoreticalPowerCurve,windDirection):
input_tensor = torch.tensor([windSpeed,
theoreticalPowerCurve,
windDirection], dtype=torch.float32)
return self.forward(input_tensor)
model = torch.load('TurbinePowerRegression-1layer.pt', weights_only=False)
import coremltools as ct
print(ct.__version__)
import pandas as pd
from sklearn.preprocessing import StandardScaler
df = pd.read_csv('T1_clean.csv',delimiter=';')
X = df[['WindSpeed','TheoreticalPowerCurve','WindDirection']]
y = df[['ActivePower']]
scaler = StandardScaler()
X = scaler.fit_transform(X)
y = scaler.fit_transform(y)
X_tensor = torch.tensor(X, dtype=torch.float32)
y_tensor = torch.tensor(y, dtype=torch.float32)
traced_model = torch.jit.trace(model, X_tensor[0])
mlmodel = ct.convert(
traced_model,
inputs=[ct.TensorType(name="input", shape=X_tensor[0].shape)],
classifier_config=None # Optional, for classification tasks
)
mlmodel.save("TurbineBase.mlpackage")
This model has a Multiarray(Float 32 3) as input and a Multiarray(Float32 1) as output.
When I try to include it in the middle of the pipeline (Adjusting the output and input types of the other models accordingly), the process runs ok, but I have the following error when opening the generated model on Xcode:
What's is missing on the models. How can I set or adjust this metadata properly?
Thanks!!!
Hi everyone
Im currently developing an object detection model that shall identify up to seven classes in an image. While im usually doing development with basic python and the ultralytics library, i thought i would like to give CreateML a shot. The experience is actually very nice, except for the fact that the model seem not to be using any ANE or GPU (MPS) for accelerated training.
On https://developer.apple.com/machine-learning/create-ml/ it states: "On-device training Train models blazingly fast right on your Mac while taking advantage of CPU and GPU."
Am I doing something wrong?
Im running the training on
Apple M1 Pro 16GB
MacOS 26.1 (Tahoe)
Xcode 26.1 (Build version 17B55)
It would be super nice to get some feedback or instructions.
Thank you in advance!
Recently, I'm trying to deploy some third-party LLM to Apple devices.
The methodoloy is similar to https://github.com/Anemll/Anemll.
The biggest issue I'm having now is the runtime memory usage.
When there are multiple functions in a model (mlpackage or mlmodelc), the runtime memory usage for weights is somehow duplicated when I load all of them. Here's the detail:
I created my multifunction mlpackage following https://apple.github.io/coremltools/docs-guides/source/multifunction-models.html
I loaded each of the functions using the generated swift class:
let config = MLModelConfiguration()
config.computeUnits = MLComputeUnits.cpuAndNeuralEngine
config.functionName = "infer_512";
let ffn1_infer_512 = try! mimo_FFN_PF_lut4_chunk_01of02(configuration: config)
config.functionName = "infer_1024";
let ffn1_infer_1024 = try! mimo_FFN_PF_lut4_chunk_01of02(configuration: config)
config.functionName = "infer_2048";
let ffn1_infer_2048 = try! mimo_FFN_PF_lut4_chunk_01of02(configuration: config)
I observed that RAM usage increases linearly as I load each of the functions.
Using instruments, I see that there are multiple HWX files generated and loaded, each of which contains all the weight data.
My understanding of what's happening here:
The CoreML framework did some MIL->MIL preprocessing before further compilation, which includes separating CPU workload from ANE workload.
The ANE part of each function is moved into a separate MIL file then compile separately into a HWX file each.
The problem is that the weight data of these HWX files are duplicated. Since that the weight data of LLMs is huge, it will cause out-of-memory issue on mobile devices.
The improvement I'm hoping from Apple:
I hope we can try to merge the processed MIL files back into one before calling ANECCompile(), so that the weights can be merged. I don't have control over that in user space and I'm not sure if that is feasible. So I'm asking for help here.
Thanks.
Topic:
Machine Learning & AI
SubTopic:
Core ML
Hi there,
I have a custom keypoint detection model and want to use it via vision's CoremlRequest API. Here's some complication for input and output:
For input My model expect 512x512 a image. Which would be resized and padded from a 1920x1080 frame. I use the .scaleToFit option, but can I also specify the color used for padding?
For output:
My model output a CoreMLFeatureValueObservation, can I have it output in a format vision recognizes? such as joints/keypoints
If my model is able to output in a format vision recognizes, would it take care to restoring the coordinates back to the original frame? (undo the padding) If not, how do I restore it from .scaletofit option?
Best,
I'm using Numbers to build a spreadsheet that I'm exporting as a CSV. I then import this file into Create ML to train a word tagger model. Everything has been working fine for all the models I've trained so far, but now I'm coming across a use case that has been breaking the import process: commas within the training data. This is a case that none of Apple's examples show.
My project takes Navajo text that has been tokenized by syllables and labels the parts-of-speech.
Case that works...
Raw text:
Naaltsoos yídéeshtah.
Tokens column:
Naal,tsoos, ,yí,déesh,tah,.
Labels column:
NObj,NObj,Space,Verb,Verb,VStem,Punct
Case that breaks...
Raw text:
óola, béésh łigaii, tłʼoh naadą́ą́ʼ, wáin, akʼah, dóó á,shįįh
Tokens column with tokenized text (commas quoted):
óo,la,",", ,béésh, ,łi,gaii,",", ,tłʼoh, ,naa,dą́ą́ʼ,",", ,wáin,",", ,a,kʼah,",", ,dóó, ,á,shįįh
(Create ML reports mismatched columns)
Tokens column with tokenized text (commas escaped):
óo,la,\,, ,béésh, ,łi,gaii,\,, ,tłʼoh, ,naa,dą́ą́ʼ,\,, ,wáin,\,, ,a,kʼah,\,, ,dóó, ,á,shįįh
(Create ML reports mismatched columns)
Tokens column with tokenized text (commas escape-quoted):
óo,la,\",\", ,béésh, ,łi,gaii,\",\", ,tłʼoh, ,naa,dą́ą́ʼ,\",\", ,wáin,\",\", ,a,kʼah,\",\", ,dóó, ,á,shįįh
(record not detected by Create ML)
Tokens column with tokenized text (commas escape-quoted):
óo,la,"","", ,béésh, ,łi,gaii,"","", ,tłʼoh, ,naa,dą́ą́ʼ,"","", ,wáin,"","", ,a,kʼah,"","", ,dóó, ,á,shįįh
(Create ML reports mismatched columns)
Labels column:
NSub,NSub,Punct,Space,NSub,Space,NSub,NSub,Punct,Space,NSub,Space,NSub,NSub,Punct,Space,NSub,Punct,Space,NSub,NSub,Punct,Space,Conj,Space,NSub,NSub
Sample From Spreadsheet
Solution Needed
It's simple enough to escape commas within CSV files, but the format needed by Create ML essentially combines entire CSV records into single columns, so I'm ending up needing a CSV record that contains a mixture of commas to use for parsing and ones to use as character literals. That's where this gets complicated.
For this particular use case (which seems like it would frequently arise when training a word tagger model), how should I properly escape a comma literal?
Topic:
Machine Learning & AI
SubTopic:
Create ML
Tags:
Natural Language
Machine Learning
Create ML
TabularData