Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

Core ML .mlpackage not found in bundle despite target membership and Copy Bundle Resources
Hi everyone, I’m working on an iOS app that uses a Core ML model to run live image recognition. I’ve run into a persistent issue with the mlpackage not being turned into a swift class. This following error is in the code, and in carDetection.mlpackage, it says that model class has not been generated yet. The error in the code is as follows: What I’ve tried: Verified Target Membership is checked for carDetectionModel.mlpackage Confirmed the file is listed under Copy Bundle Resources (and removed from Compile Sources) Cleaned the build folder (Shift + Cmd + K) and rebuilt Renamed and re-added the .mlpackage file Restarted Xcode and re-added the file Logged bundle contents at runtime, but the .mlpackage still doesn’t appear The mlpackage is in Copy bundle resources, and is not in the compile sources. I just don't know why a swift class is not being generated for the mlpackage. Could someone please give me some guidance on what to do to resolve this issue? Sorry if my error is a bit naive, I'm pretty new to iOS app development
3
0
527
Dec ’25
Do App Intent Domains work with Siri already?
Hi, guys. I'm writing about Apple Intelligence and I reached the point I have to explain App Intent Domains https://developer.apple.com/documentation/AppIntents/app-intent-domains but I noticed that there is a note explaining that these services are not available with Siri. I tried the example provided by Apple at https://developer.apple.com/documentation/AppIntents/making-your-app-s-functionality-available-to-siri and I can only make the intents work from the Shortcuts App, but not from Siri. Is this correct. App Intent Domains are still not available with Siri? Thanks
0
0
426
Nov ’25
Huge discrepency of predictions confidence between from Pytorch to Coreml example
I am follwing this tutorial: https://apple.github.io/coremltools/docs-guides/source/convert-a-torchvision-model-from-pytorch.html I have obtained simialr result using the python code. However when I view it in Xcode, the preview prediction percentage confidence is way off I suspect it is due the the output of the model, which is in percentage already and in Xcode it multiply 100 again leading to this result. Please give me any feedback to fix this, thank you.
0
0
202
Nov ’25
Train adapter with tool calling
Documentation on adapter train is lacking any details related to training on dataset with tool calling. And page about tool calling itself only explain how to use it from Swift without any internal details useful in training. Question is how schema should looks like for including tool calling in dataset?
1
0
251
Jun ’25
Deterministic AI Safety Governor for iOS — Seeking Feedback on App Review Approach
I've built an iOS app with a novel approach to AI safety: a deterministic, pre-inference validation layer called Newton Engine. Instead of relying on the LLM to self-moderate, Newton validates every prompt BEFORE it reaches the model. It uses shape theory and semantic analysis to detect: • Corrosive frames (self-harm language patterns) • Logical contradictions (requests that undermine themselves) • Delegation attempts (asking AI to make human decisions) • Jailbreak patterns (prompt injection, role-play escapes) • Hallucination triggers (requests for fabricated citations) The system achieves a 96% adversarial catch rate across 847 test cases, with zero false positives on benign prompts. Key technical details: • Pure Swift/SwiftUI, no external dependencies • Runs entirely on-device (no server calls for validation) • Deterministic (same input always produces same output) • Auditable (full trace logging for every validation) I'm preparing to submit to the App Store and wanted to ask: Are there specific App Review guidelines I should reference for AI safety claims? Is there interest from Apple in deterministic governance layers for Apple Intelligence integration? Any recommendations for demonstrating safety compliance during review? The app is called Ada, and the engine is open source at: github.com/jaredlewiswechs/ada-newton Happy to share technical documentation or discuss the architecture with anyone interested. See: parcri.net
1
0
424
4w
Is there anywhere to get precompiled WhisperKit models for Swift?
If try to dynamically load WhipserKit's models, as in below, the download never occurs. No error or anything. And at the same time I can still get to the huggingface.co hosting site without any headaches, so it's not a blocking issue. let config = WhisperKitConfig( model: "openai_whisper-large-v3", modelRepo: "argmaxinc/whisperkit-coreml" ) So I have to default to the tiny model as seen below. I have tried so many ways, using ChatGPT and others, to build the models on my Mac, but too many failures, because I have never dealt with builds like that before. Are there any hosting sites that have the models (small, medium, large) already built where I can download them and just bundle them into my project? Wasted quite a large amount of time trying to get this done. import Foundation import WhisperKit @MainActor class WhisperLoader: ObservableObject { var pipe: WhisperKit? init() { Task { await self.initializeWhisper() } } private func initializeWhisper() async { do { Logging.shared.logLevel = .debug Logging.shared.loggingCallback = { message in print("[WhisperKit] \(message)") } let pipe = try await WhisperKit() // defaults to "tiny" self.pipe = pipe print("initialized. Model state: \(pipe.modelState)") guard let audioURL = Bundle.main.url(forResource: "44pf", withExtension: "wav") else { fatalError("not in bundle") } let result = try await pipe.transcribe(audioPath: audioURL.path) print("result: \(result)") } catch { print("Error: \(error)") } } }
0
0
109
Jun ’25
Core-ml-on-device-llama Converting fails
I followed below url for converting Llama-3.1-8B-Instruct model but always fails even i have 64GB of free space after downloading model from huggingface. https://machinelearning.apple.com/research/core-ml-on-device-llama Also tried with other models Llama-3.1-1B-Instruct & Llama-3.1-3B-Instruct models those are converted but while doing performance test in xcode fails for all compunits. Is there any source code to run llama models in ios app.
0
0
149
Apr ’25
Hardware Support for Low Precision Data Types?
Hi all, I'm trying to find out if/when we can expect mxfp8/mxfp4 support on Apple Silicon. I've noticed that mlx now has casting data types, but all computation is still done in bf16. Would be great to reduce power consumption with support for these lower precision data types since edge inference is already typically done at a lower precision! Thanks in advance.
0
0
275
Nov ’25
“Accelerate Transformer Training on Apple Devices from Months to Hours!”
I am excited to share that I have developed a Metal kernel for Flash Attention that eliminates race conditions and fully leverages Apple Silicon’s shared memory and registers. This kernel can dramatically accelerate training of transformer-based models. Early benchmarks suggest that models which previously required months to train could see reductions to just a few hours on Apple hardware, while maintaining numerical stability and accuracy. I plan to make the code publicly available to enable the broader community to benefit. I would be happy to keep you updated on the latest developments and improvements as I continue testing and optimizing the kernel. I believe this work could provide valuable insights for Apple’s machine learning research and products.
0
0
227
Nov ’25
Where are Huggingface Models, downloaded by Swift MLX apps cached
I'm downloading a fine-tuned model from HuggingFace which is then cached on my Mac when the app first starts. However, I wanted to test adding a progress bar to show the download progress. To test this I need to delete the cached model. From what I've seen online this is cached at /Users/userName/.cache/huggingface/hub However, if I delete the files from here, using Terminal, the app still seems to be able to access the model. Is the model cached somewhere else? On my iPhone it seems deleting the app also deletes the cached model (app data) so that is useful.
0
0
418
Oct ’25
Inquiry About Building an App for Object Detection, Background Removal, and Animation
Hi all! Nice to meet you., I am planning to build an iOS application that can: Capture an image using the camera or select one from the gallery. Remove the background and keep only the detected main object. Add a border (outline) around the detected object’s shape. Apply an animation along that border (e.g., moving light or glowing effect). Include a transition animation when removing the background — for example, breaking the background into pieces as it disappears. The app Capword has a similar feature for object isolation, and I’d like to build something like that. Could you please provide any guidance, frameworks, or sample code related to: Object segmentation and background removal in Swift (Vision or Core ML). Applying custom borders and shape animations around detected objects. Recognizing the object name (e.g., “person”, “cat”, “car”) after segmentation. Thank you very much for your support. Best regards, SINN SOKLYHOR
0
0
166
Nov ’25
Core ML Model Performance report shows prediction speed much faster than actual app runs
Hi all, I'm tuning my app prediction speed with Core ML model. I watched and tried the methods in video: Improve Core ML integration with async prediction and Optimize your Core ML usage. I also use instruments to look what's the bottleneck that my prediction speed cannot be faster. Below is the instruments result with my app. its prediction duration is 10.29ms And below is performance report shows the average speed of prediction is 5.55ms, that is about half time of my app prediction! Below is part of my instruments records. I think the prediction should be considered quite frequent. Could it be faster? How to be the same prediction speed as performance report? The prediction speed on macbook Pro M2 is nearly the same as macbook Air M1!
5
0
1.3k
Oct ’25
Updated DetectHandPoseRequest revision from WWDC25 doesn't exist
I watched this year WWDC25 "Read Documents using the Vision framework". At the end of video there is mention of new DetectHandPoseRequest model for hand pose detection in Vision API. I looked Apple documentation and I don't see new revision. Moreover probably typo in video because there is only DetectHumanPoseRequst (swift based) and VNDetectHumanHandPoseRequest (obj-c based) (notice lack of Human prefix in WWDC video) First one have revision only added in iOS 18+: https://developer.apple.com/documentation/vision/detecthumanhandposerequest/revision-swift.enum/revision1 Second one have revision only added in iOS14+: https://developer.apple.com/documentation/vision/vndetecthumanhandposerequestrevision1 I don't see any new revision targeting iOS26+
0
0
142
Oct ’25
Missing module 'coremltools.libmilstoragepython'
Hello! I'm following the Foundation Models adapter training guide (https://developer.apple.com/apple-intelligence/foundation-models-adapter/) on my NVIDIA DGX Spark box. I'm able to train on my own data but the example notebook fails when I try to export the artifact as an fmadapter. I get the following error for the code block I'm trying to run. I haven't touched any of the code in the export folder. I tried exporting it on my Mac too and got the same error as well (given below). Would appreciate some more clarity around this. Thank you. Code Block: from export.export_fmadapter import Metadata, export_fmadapter metadata = Metadata( author="3P developer", description="An adapter that writes play scripts.", ) export_fmadapter( output_dir="./", adapter_name="myPlaywritingAdapter", metadata=metadata, checkpoint="adapter-final.pt", draft_checkpoint="draft-model-final.pt", ) Error: --------------------------------------------------------------------------- ModuleNotFoundError Traceback (most recent call last) Cell In[10], line 1 ----> 1 from export.export_fmadapter import Metadata, export_fmadapter 3 metadata = Metadata( 4 author="3P developer", 5 description="An adapter that writes play scripts.", 6 ) 8 export_fmadapter( 9 output_dir="./", 10 adapter_name="myPlaywritingAdapter", (...) 13 draft_checkpoint="draft-model-final.pt", 14 ) File /workspace/export/export_fmadapter.py:11 8 from typing import Any 10 from .constants import BASE_SIGNATURE, MIL_PATH ---> 11 from .export_utils import AdapterConverter, AdapterSpec, DraftModelConverter, camelize 13 logger = logging.getLogger(__name__) 16 class MetadataKeys(enum.StrEnum): File /workspace/export/export_utils.py:15 13 import torch 14 import yaml ---> 15 from coremltools.libmilstoragepython import _BlobStorageWriter as BlobWriter 16 from coremltools.models.neural_network.quantization_utils import _get_kmeans_lookup_table_and_weight 17 from coremltools.optimize._utils import LutParams ModuleNotFoundError: No module named 'coremltools.libmilstoragepython'
4
0
604
Oct ’25
Best practices for designing proactive FinTech insights with App Intents & Shortcuts?
Hello fellow developers, I'm the founder of a FinTech startup, Cent Capital (https://cent.capital), where we are building an AI-powered financial co-pilot. We're deeply exploring the Apple ecosystem to create a more proactive and ambient user experience. A core part of our vision is to use App Intents and the Shortcuts app to surface personalized financial insights without the user always needing to open our app. For example, suggesting a Shortcut like, "What's my spending in the 'Dining Out' category this month?" or having an App Intent proactively surface an insight like, "Your 'Subscriptions' budget is almost full." My question for the community is about the architectural and user experience best practices for this. How are you thinking about the balance between providing rich, actionable insights via Intents without being overly intrusive or "spammy" to the user? What are the best practices for designing the data model that backs these App Intents for a complex domain like personal finance? Are there specific performance or privacy considerations we should be aware of when surfacing potentially sensitive financial data through these system-level integrations? We believe this is the future of FinTech apps on iOS and would love to hear how other developers are thinking about this challenge. Thanks for your insights!
0
0
272
Oct ’25
Custom keypoint detection model through vision api
Hi there, I have a custom keypoint detection model and want to use it via vision's CoremlRequest API. Here's some complication for input and output: For input My model expect 512x512 a image. Which would be resized and padded from a 1920x1080 frame. I use the .scaleToFit option, but can I also specify the color used for padding? For output: My model output a CoreMLFeatureValueObservation, can I have it output in a format vision recognizes? such as joints/keypoints If my model is able to output in a format vision recognizes, would it take care to restoring the coordinates back to the original frame? (undo the padding) If not, how do I restore it from .scaletofit option? Best,
1
0
917
Oct ’25
Image Playground files suddenly not available
My app lets you create images with Image Playground. When the user approves an image I move it to the documents dir from the temp storage. With over a year of usage I’ve created a lot of images over time. Out of nowhere the app stopped loading my custom creations from Image Playground saying it couldn’t find the files. It still had my VoiceOver strings I had added for each image and still had the custom categories I assigned them. Debug code to look in the docs dir doesn’t find them. I downloaded the app’s container and only see the images I created as a test after the problem started. But my ~70MB app is still taking up 300MB on my iPhone so it feels like they’re there but not accessible. Is there anything else I can try?
2
0
777
3w