Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

Difference between compiling a Model using CoreML and Swift-Transformers
Hello, I was successfully able to compile TKDKid1000/TinyLlama-1.1B-Chat-v0.3-CoreML using Core ML, and it's working well. However, I’m now trying to compile the same model using Swift Transformers. With the limited documentation available on the swift-chat and Hugging Face repositories, I’m finding it difficult to understand the correct process for compiling a model via Swift Transformers. I attempted the following approach, but I’m fairly certain it’s not the recommended or correct method. Could someone guide me on the proper way to compile and use models like TinyLlama with Swift Transformers? Any official workflow, example, or best practice would be very helpful. Thanks in advance! This is the approach I have used: import Foundation import CoreML import Tokenizers @main struct HopeApp { static func main() async { print(" Running custom decoder loop...") do { let tokenizer = try await AutoTokenizer.from(pretrained: "PY007/TinyLlama-1.1B-Chat-v0.3") var inputIds = tokenizer("this is the test of the prompt") print("🧠 Prompt token IDs:", inputIds) let model = try float16_model(configuration: .init()) let maxTokens = 30 for _ in 0..<maxTokens { let input = try MLMultiArray(shape: [1, 128], dataType: .int32) let mask = try MLMultiArray(shape: [1, 128], dataType: .int32) for i in 0..<inputIds.count { input[i] = NSNumber(value: inputIds[i]) mask[i] = 1 } for i in inputIds.count..<128 { input[i] = 0 mask[i] = 0 } let output = try model.prediction(input_ids: input, attention_mask: mask) let logits = output.logits // shape: [1, seqLen, vocabSize] let lastIndex = inputIds.count - 1 let lastLogitsStart = lastIndex * 32003 // vocab size = 32003 var nextToken = 0 var maxLogit: Float32 = -Float.greatestFiniteMagnitude for i in 0..<32003 { let logit = logits[lastLogitsStart + i].floatValue if logit > maxLogit { maxLogit = logit nextToken = i } } inputIds.append(nextToken) if nextToken == 32002 { break } let partialText = try await tokenizer.decode(tokens:inputIds) print(partialText) } } catch { print("❌ Error: \(error)") } } }
1
0
191
Jun ’25
UI Guidelines for Apple Intelligence?
Are there any guidelines for using Foundation Models To generate text for users in response to some canned queries? Should we use a special icon or text to let the user know that Apple Intelligence is generating the text? Should there be a disclaimer like, Apple Intelligence can make mistakes, please check for accuracy, etc?
1
0
677
Sep ’25
Crash when testing Speech sample app with FoundationModels on macOS 26.0 beta and iOS 26.0 beta
Hello, I am testing the sample project provided here: Bringing advanced speech-to-text capabilities to your app. On both macOS 26.0 beta and iOS 26.0 beta, the app crashes immediately on launch with a dyld "Symbol not found" error related to FoundationModels.framework. It feels like this may be related to testing primarily on newer Apple Silicon devices, as I am seeing consistent crashes on an Intel MacBook and on an older iPhone device. I would appreciate any insight, confirmation, or guidance on whether this is a known limitation or if there is a workaround. Is it planned to be resolved soon? Environment macOS: Device: MacBook Pro (Intel) Processor: 2 GHz Quad-Core Intel Core i5 Graphics: Intel Iris Plus Graphics 1536 MB Memory: 16 GB 3733 MHz LPDDR4X OS: macOS Tahoe Version 26.0 Beta (25A5338b) iOS: Device: iPhone 11 Model Number: MHDD3HN/A OS: iOS 26.0 Xcode: Version: 26.0 beta 3 (17A5276g) Crash (macOS) Abort signal received. Excerpt from crash dump: dyld`__abort_with_payload: 0x7ff80e3ad4a0 &lt;+0&gt;: movl $0x2000209, %eax 0x7ff80e3ad4a5 &lt;+5&gt;: movq %rcx, %r10 0x7ff80e3ad4a8 &lt;+8&gt;: syscall -&gt; 0x7ff80e3ad4aa &lt;+10&gt;: jae 0x7ff80e3ad4b4 Console: dyld[9819]: Symbol not found: _$s16FoundationModels20LanguageModelSessionC5model10guardrails5tools12instructionsAcA06SystemcD0C_AC10GuardrailsVSayAA4Tool_pGAA12InstructionsVSgtcfC Referenced from: /Users/userx/Library/Developer/Xcode/DerivedData/SwiftTranscriptionSampleApp-*/Build/Products/Debug/SwiftTranscriptionSampleApp.app/Contents/MacOS/SwiftTranscriptionSampleApp.debug.dylib Expected in: /System/Library/Frameworks/FoundationModels.framework/Versions/A/FoundationModels Crash (iOS) Abort signal received. Excerpt from crash dump: dyld`__abort_with_payload: 0x18f22b4b0 &lt;+0&gt;: mov x16, #0x209 0x18f22b4b4 &lt;+4&gt;: svc #0x80 -&gt; 0x18f22b4b8 &lt;+8&gt;: b.lo 0x18f22b4d8 Console dyld[2080]: Symbol not found: _$s16FoundationModels20LanguageModelSessionC5model10guardrails5tools12instructionsAcA06SystemcD0C_AC10GuardrailsVSayAA4Tool_pGAA12InstructionsVSgtcfC Referenced from: /private/var/containers/Bundle/Application/.../SwiftTranscriptionSampleApp.app/SwiftTranscriptionSampleApp.debug.dylib Expected in: /System/Library/Frameworks/FoundationModels.framework/FoundationModels Question Is this crash expected on Intel Macs and older iPhone models with the beta SDKs? Is there an official statement on whether macOS 26.x releases support Intel, or it exists only until macOS 26.1? Any suggested workarounds for testing this sample project on current hardware? Is this a known limitation for the 26.0 beta, and if so, should we expect a fix in 26.0 or only in subsequent releases? Attaching screenshots for reference. Thank you in advance.
4
0
555
Aug ’25
Model w/ Guardrails Disabled Still Frequently Refuses to Summarize Text
Foundation Models are driving me up the wall. My use case: A news app - I want to summarize news articles. Sounds like a perfect use for the added-in-beta-5 "no guardrails" mode for text-to-text transformations... ... and it's true, I don't get guardrails exceptions anymore but now, the model itself frequently refuses to summarize stuff which in a way is even worse as I have to parse the output text to figure out if it failed instead of getting an exception. I mostly worked that out with my system instructions but still, the refusing to summarize makes it really tough to use. I instructed the model to tell me why it failed if that happens. Examples of various refusals for news articles from major sources: "The article mentions "Visual Lookup" but does not provide details about how it integrates with iOS 26." "The article includes unsafe content regarding a political figure's potential influence over the Federal Reserve board, which is against my guidelines." "the article contains unsafe content." "The article is biased and opinionated and focuses on the author's opinion." (this is despite the instructions specifically asking for a neutral summary - I am asking it to not use bias in the output but it still refuses) I have tons of these. Note that if I don't use the "no guardrails" mode and use a Generable instead, some of these work fine so right now I have to do two passes on much of the content since I never know which one will work. Having a "summary mode" that often refuses to summarize current news articles (the world is not a great place, some of these stories are a bummer) is near worthless.
8
0
933
Sep ’25
The asset pack with the ID “testVideoAssetPack” couldn’t be looked up: Could not connect to the server.
On macOS Tahoe26.0, iOS 26.0 (23A5287g) not emulator, Xcode 26.0 beta 3 (17A5276g) Follow this tutorial Testing your asset packs locally The start the test server command I use this command line to start the test server:xcrun ba-serve --host 192.168.0.109 test.aar The terminal showThe content displayed on the terminal is: Loading asset packs… Loading the asset pack at “test.aar”… Listening on port 63125…… Choose an identity in the panel to continue. Listening on port 63125… running the project, Xcode reports an error:Download failed: Could not connect to the server. I use iPhone safari visit this website: https://192.168.0.109:63125, on the page display "Hello, world!" There are too few error messages in both of the above questions. I have no idea what the specific reasons are.I hope someone can offer some guidance. Best Regards. { "assetPackID": "testVideoAssetPack", "downloadPolicy": { "prefetch": { "installationEventTypes": ["firstInstallation", "subsequentUpdate"] } }, "fileSelectors": [ { "file": "video/test.mp4" } ], "platforms": [ "iOS" ] } this is my Manifest.json
1
0
360
Jul ’25
tensorflow 2.20 broken support
Hi, testing latest tensorflow-metal plugin with tensorflow 2.20 doesn't work.. using python Python 3.12.11 (main, Jun 3 2025, 15:41:47) [Clang 17.0.0 (clang-1700.0.13.3)] on darwin simple testing shows error: import tensorflow as tf Traceback (most recent call last): File "", line 1, in File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/init.py", line 438, in _ll.load_library(_plugin_dir) File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library py_tf.TF_LoadLibrary(lib) tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Library not loaded: @rpath/_pywrap_tensorflow_internal.so Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib Reason: tried: '/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file), '/System/Volumes/Preboot/Cryptexes/OS/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file) tf.config.experimental.list_physical_devices('GPU') Traceback (most recent call last): File "", line 1, in NameError: name 'tf' is not defined I fixed this error by copying _pywrap_tensorflow_internal.so where it's searched.. 1)mkdir /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64 2)mkdir /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/ 3)cp /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/python/_pywrap_tensorflow_internal.so /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/ then fails symbol not found: Symbol not found: __ZN10tensorflow28_AttrValue_default_instance_E in libmetal_plugin.dylib full log: with import tensorflow as tf Traceback (most recent call last): File "", line 1, in File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/init.py", line 438, in _ll.load_library(_plugin_dir) File "/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library py_tf.TF_LoadLibrary(lib) tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Symbol not found: __ZN10tensorflow28_AttrValue_default_instance_E Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users/obg/npu/venv-tf/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib Expected in: <2FF91C8B-0CB6-3E66-96B7-092FDF36772E> /Users/obg/npu/venv-tf/lib/python3.12/site-packages/_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so
1
0
725
Oct ’25
Foundation Models performance reality check - anyone else finding it slow?
Testing Foundation Models framework with a health-focused recipe generation app. The on-device approach is appealing but performance is rough. Taking 20+ seconds just to get recipe name and description. Same content from Claude API: 4 seconds. I know it's beta and on-device has different tradeoffs, but this is approaching unusable territory for real-time user experience. The streaming helps psychologically but doesn't mask the underlying latency.The privacy/cost benefits are compelling but not if users abandon the feature before it completes. Anyone else seeing similar performance? Is this expected for beta, or are there optimization techniques I'm missing?
5
0
294
Jul ’25
Vision Framework - Testing RecognizeDocumentsRequest
How do I test the new RecognizeDocumentRequest API. Reference: https://www.youtube.com/watch?v=H-GCNsXdKzM I am running Xcode Beta, however I only have one primary device that I cannot install beta software on. Please provide a strategy for testing. Will simulator work? The new capability is critical to my application, just what I need for structuring document scans and extraction. Thank you.
1
0
227
Jun ’25
How to encode Tool.Output (aka PromptRepresentable)?
Hey, I've been trying to write an AI agent for OpenAI's GPT-5, but using the @Generable Tool types from the FoundationModels framework, which is super awesome btw! I'm having trouble implementing the tool calling, though. When I receive a tool call from the OpenAI api, I do the following: Find the tool in my [any Tool] array via the tool name I get from the model if let tool = tools.first(where: { $0.name == functionCall.name }) { // ... } Parse the arguments of the tool call via GeneratedContent(json:) let generatedContent = try GeneratedContent(json: functionCall.arguments) Pass the tool and arguments to a function that calls tool.call(arguments: arguments) and returns the tool's output type private func execute<T: Tool>(_ tool: T, with generatedContent: GeneratedContent) async throws -> T.Output { let arguments = try T.Arguments.init(generatedContent) return try await tool.call(arguments: arguments) } Up to this point, everything is working as expected. However, the tool's output type is any PromptRepresentable and I have no idea how to turn that into something that I can encode and send back to the model. I assumed there might be a way to turn it into a GeneratedContent but there is no fitting initializer. Am I missing something or is this not supported? Without a way to return the output to an external provider, it wouldn't really be possible to use FoundationModels Tool type I think. That would be unfortunate because it's implemented so elegantly. Thanks!
2
0
234
Aug ’25
BNNS random number generator for Double value types
I generate an array of random floats using the code shown below. However, I would like to do this with Double instead of Float. Are there any BNNS random number generators for double values, something like BNNSRandomFillUniformDouble? If not, is there a way I can convert BNNSNDArrayDescriptor from float to double? import Accelerate let n = 100_000_000 let result = Array<Float>(unsafeUninitializedCapacity: n) { buffer, initCount in var descriptor = BNNSNDArrayDescriptor(data: buffer, shape: .vector(n))! let randomGenerator = BNNSCreateRandomGenerator(BNNSRandomGeneratorMethodAES_CTR, nil) BNNSRandomFillUniformFloat(randomGenerator, &descriptor, 0, 1) initCount = n }
3
0
133
Jun ’25
Foundation Model crash on macOS 15 (iPad app compatibility)
I have integrated Apple’s Foundation Model into my iOS application. As known, Foundation Model is only supported starting from iOS 26 on compatible devices. To maintain compatibility with older iOS versions, I wrapped the API calls with the condition if #available(iOS 26, *). The application works normally on an iPad running iOS 18 and on a Mac running macOS 26. However, when running the same build on a MacBook Air M1 (macOS 15) through iPad app compatibility, the app crashes immediately upon launch. The main issue is that I cannot debug directly on macOS 15, since the app can only be built on macOS 26 with Xcode beta. I then have to distribute it via TestFlight and download it on the MacBook Air M1 for testing. This makes identifying the detailed cause of the crash very difficult and time-consuming. Nevertheless, I have confirmed that the crash is caused by the Foundation Model APIs.
1
0
949
Aug ’25
FoundationModels and Core Data
Hi, I have an app that uses Core Data to store user information and display it in various views. I want to know if it's possible to easily integrate this setup with FoundationModels to make it easier for the user to query and manipulate the information, and if so, how would I go about it? Can the model be pointed to the database schema file and the SQLite file sitting in the user's app group container to parse out the information needed? And/or should the NSManagedObjects be made @Generable for better output? Any guidance about this would be useful.
1
0
212
Jun ’25
Creating .mlmodel with Create ML Components
I have rewatched WWDC22 a few times , but still not getting full understanding how to get .mlmodel model file type from components . Example with banana ripeness is cool , but what need to be added to actually have output of .mlmodel , is somewhere full sample code for this type of modular project ? Code is from [https://developer.apple.com/videos/play/wwdc2022/10019) import CoreImage import CreateMLComponents struct ImageRegressor { static let trainingDataURL = URL(fileURLWithPath: "~/Desktop/bananas") static let parametersURL = URL(fileURLWithPath: "~/Desktop/parameters") static func train() async throws -> some Transformer<CIImage, Float> { let estimator = ImageFeaturePrint() .appending(LinearRegressor()) // File name example: banana-5.jpg let data = try AnnotatedFiles(labeledByNamesAt: trainingDataURL, separator: "-", index: 1, type: .image) .mapFeatures(ImageReader.read) .mapAnnotations({ Float($0)! }) let (training, validation) = data.randomSplit(by: 0.8) let transformer = try await estimator.fitted(to: training, validateOn: validation) try estimator.write(transformer, to: parametersURL) return transformer } } I have tried to run it in Mac OS command line type app, Swift-UI but most what I had as output was .pkg with "pipeline.json, parameters, optimizer.json, optimizer"
3
0
620
Mar ’25
OpenIntent not executed with Visual Intelligence
I'm building a new feature with Visual Intelligence framework. My implementation for IndexedEntity and IntentValueQuery worked as expected and I can see a list of objects in visual search result. However, my OpenIntent doesn't work. When I tap on the object, I got a message on screen "Sorry somethinf went wrong ...". and the breakpoint in perform() is never triggered. Things I've tried: I added @MainActor before perform(), this didn't change anything I set static let openAppWhenRun: Bool = true and static var supportedModes: IntentModes = [.foreground(.immediate)], still nothing I created a different intent for the see more button at the end of feed. This AppIntent with schema: .visualIntelligence.semanticContentSearch worked, perform() is executed
10
0
393
Aug ’25
Unexpectedly slow CreateML text classifier training (limited GPU/CPU usage)
While training a text classifier model with a few thousand samples completes in seconds, when using 100,000 or 1 million samples, CreateML's training time increases exponentially (to hours or days). During these hours/days, GPU usage is low and almost every CPU core is idle. When using the Swift APIs for model training, resource utilization does not increase. I'm using Xcode 16.2, macOS 15.2 on either an M2 Ultra 64 GB or an M3 Max 48 GB laptop (both using built-in SSD with ~500 GB free) running no other applications. Is there a setting I've missed to allow training to take over more of my computing resources? Is this expected of CreateML (i.e., when looking to exploit a larger corpus, I should move to other tooling)? I'd love to speed up my iteration cycle time.
1
0
672
Feb ’25
AI-Powered Feed Customization via User-Defined Algorithm
Hey guys 👋 I’ve been thinking about a feature idea for iOS that could totally change the way we interact with apps like Twitter/X. Imagine if we could define our own recommendation algorithm, and have an AI on the iPhone that replaces the suggested tweets in the feed with ones that match our personal interests — based on public tweets, and without hacking anything. Kinda like a personalized "AI skin" over the app that curates content you actually care about. Feels like this would make content way more relevant and less algorithmically manipulative. Would love to know what you all think — and if Apple could pull this off 🔥
1
0
81
Jun ’25