General:
Forums subtopic: App & System Services > Networking
DevForums tag: Network Extension
Network Extension framework documentation
Routing your VPN network traffic article
Filtering traffic by URL sample code
Filtering Network Traffic sample code
TN3120 Expected use cases for Network Extension packet tunnel providers technote
TN3134 Network Extension provider deployment technote
TN3165 Packet Filter is not API technote
Network Extension and VPN Glossary forums post
Debugging a Network Extension Provider forums post
Exporting a Developer ID Network Extension forums post
Network Extension vs ad hoc techniques on macOS forums post
Network Extension Provider Packaging forums post
NWEndpoint History and Advice forums post
Extra-ordinary Networking forums post
Wi-Fi management:
Wi-Fi Fundamentals forums post
TN3111 iOS Wi-Fi API overview technote
How to modernize your captive network developer news post
iOS Network Signal Strength forums post
See also Networking Resources.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Networking
RSS for tagExplore the networking protocols and technologies used by the device to connect to Wi-Fi networks, Bluetooth devices, and cellular data services.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Questions about FTP crop up from time-to-time here on DevForums. In most cases I write a general “don’t use FTP” response, but I don’t have time to go into all the details. I’ve created this post as a place to collect all of those details, so I can reference them in other threads.
IMPORTANT Apple’s official position on FTP is:
All our FTP APIs have been deprecated, and you should avoid using deprecated APIs.
Apple has been slowly removing FTP support from the user-facing parts of our system. The most recent example of this is that we removed the ftp command-line tool in macOS 10.13.
You should avoid the FTP protocol and look to adopt more modern alternatives.
The rest of this post is an informational explanation of the overall FTP picture.
This post is locked so I can keep it focused. If you have questions or comments, please do create a new thread in the App & System Services > Networking subtopic and I’ll respond there.
Don’t Use FTP
FTP is a very old and very crufty protocol. Certain things that seem obvious to us now — like being able to create a GUI client that reliably shows a directory listing in a platform-independent manner — aren’t possible to do in FTP. However, by far the biggest problem with FTP is that it provides no security [1]. Specifically, the FTP protocol:
Provides no on-the-wire privacy, so anyone can see the data you transfer
Provides no client-authenticates-server authentication, so you have no idea whether you’re talking to the right server
Provides no data integrity, allowing an attacker to munge your data in transit
Transfers user names and passwords in the clear
Using FTP for anonymous downloads may be acceptable (see the explanation below) but most other uses of FTP are completely inappropriate for the modern Internet.
IMPORTANT You should only use FTP for anonymous downloads if you have an independent way to check the integrity of the data you’ve downloaded. For example, if you’re downloading a software update, you could use code signing to check its integrity. If you don’t check the integrity of the data you’ve downloaded, an attacker could substitute a malicious download instead. This would be especially bad in, say, the software update case.
These fundamental problems with the FTP protocol mean that it’s not a priority for Apple. This is reflected in the available APIs, which is the subject of the next section.
FTP APIs
Apple provides two FTP APIs:
All Apple platforms provide FTP downloads via URLSession.
Most Apple platforms (everything except watchOS) support CFFTPStream, which allows for directory listings, downloads, uploads, and directory creation.
All of these FTP APIs are now deprecated:
URLSession was deprecated for the purposes of FTP in the 2022 SDKs (macOS 13, iOS 16, iPadOS 16, tvOS 16, watchOS 9) [2].
CFFTPStream was deprecated in the 2016 SDKs (macOS 10.11, iOS 9, iPadOS 9, tvOS 9).
CFFTPStream still works about as well as it ever did, which is not particularly well. Specifically:
There is at least one known crashing bug (r. 35745763), albeit one that occurs quite infrequently.
There are clear implementation limitations — like the fact that CFFTPCreateParsedResourceListing assumes a MacRoman text encoding (r. 7420589) — that won’t be fixed.
If you’re looking for an example of how to use these APIs, check out SimpleFTPSample.
Note This sample hasn’t been updated since 2013 and is unlikely to ever be updated given Apple’s position on FTP.
The FTP support in URLSession has significant limitations:
It only supports FTP downloads; there’s no support for uploads or any other FTP operations.
It doesn’t support resumable FTP downloads [3].
It doesn’t work in background sessions. That prevents it from running FTP downloads in the background on iOS.
It’s only supported in classic loading mode. See the usesClassicLoadingMode property and the doc comments in <Foundation/NSURLSession.h>.
If Apple’s FTP APIs are insufficient for your needs, you’ll need to write or acquire your own FTP library. Before you do that, however, consider switching to an alternative protocol. After all, if you’re going to go to the trouble of importing a large FTP library into your code base, you might as well import a library for a better protocol. The next section discusses some options in this space.
Alternative Protocols
There are numerous better alternatives to FTP:
HTTPS is by far the best alternative to FTP, offering good security, good APIs on Apple platforms, good server support, and good network compatibility. Implementing traditional FTP operations over HTTPS can be a bit tricky. One possible way forward is to enable DAV extensions on the server.
FTPS is FTP over TLS (aka SSL). While FTPS adds security to the protocol, which is very important, it still inherits many of FTP’s other problems. Personally I try to avoid this protocol.
SFTP is a file transfer protocol that’s completely unrelated to FTP. It runs over SSH, making it a great alternative in many of the ad hoc setups that traditionally use FTP.
Apple doesn’t have an API for either FTPS or SFTP, although on macOS you may be able to make some headway by invoking the sftp command-line tool.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
[1] In another thread someone asked me about FTP’s other problems, those not related to security, so let’s talk about that.
One of FTP’s implicit design goals was to provide cross-platform support that exposes the target platform. You can think of FTP as being kinda like telnet. When you telnet from Unix to VMS, it doesn’t aim to abstract away VMS commands, so that you can type Unix commands at the VMS prompt. Rather, you’re expected to run VMS commands. FTP is (a bit) like that.
This choice made sense back when the FTP protocol was invented. Folks were expecting to use FTP via a command-line client, so there was a human in the loop. If they ran a command and it produced VMS-like output, that was fine because they knew that they were FTPing into a VMS machine.
However, most users today are using GUI clients, and this design choice makes it very hard to create a general GUI client for FTP. Let’s consider the simple problem of getting the contents of a directory. When you send an FTP LIST command, the server would historically run the platform native directory list command and pipe the results back to you. To create a GUI client you have to parse that data to extract the file names. Doing that is a serious challenge. Indeed, just the first step, working out the text encoding, is a challenge. Many FTP servers use UTF-8, but some use ISO-Latin-1, some use other standard encodings, some use Windows code pages, and so on.
I say “historically” above because there have been various efforts to standardise this stuff, both in the RFCs and in individual server implementations. However, if you’re building a general client you can’t rely on these efforts. After all, the reason why folks continue to use FTP is because of it widespread support.
[2] To quote the macOS 13 Ventura Release Notes:
FTP is deprecated for URLSession and related APIs. Please adopt
modern secure networking protocols such as HTTPS. (92623659)
[3] Although you can implement resumable downloads using the lower-level CFFTPStream API, courtesy of the kCFStreamPropertyFTPFileTransferOffset property.
Revision History
2025-10-06 Explained that URLSession only supports FTP in classic loading mode. Made other minor editorial changes.
2024-04-15 Added a footnote about FTP’s other problems. Made other minor editorial changes.
2022-08-09 Noted that the FTP support in URLSession is now deprecated. Made other minor editorial changes.
2021-04-06 Fixed the formatting. Fixed some links.
2018-02-23 First posted.
We are using PacketTunnel as system extension to establish vpn tunnel. The flow is like:
Create a PacketTunnelProvide to establish vpn
When tunnel gets connected add excludedRoutes by calling setTunnelNetworkSettings().
Result: The routing table is not getting updated with new excludeRoutes entries.
As per setTunnelNetworkSettings() documentation:
"This function is called by tunnel provider implementations to set the network settings of the tunnel, including IP routes, DNS servers, and virtual interface addresses depending on the tunnel type. Subclasses should not override this method. This method can be called multiple times during the lifetime of a particular tunnel. It is not necessary to call this function with nil to clear out the existing settings before calling this function with a non-nil configuration."
So we believe setTunnelNetworkSettings() should be able to set new excludeRoutes. We could see we are passing correct entries to setTunnelNetworkSettings():
{
tunnelRemoteAddress = 10.192.229.240
DNSSettings = {
protocol = cleartext
server = (
10.192.230.211,
192.168.180.15,
)
matchDomains = (
,
)
matchDomainsNoSearch = NO
}
IPv4Settings = {
configMethod = manual
addresses = (
100.100.100.17,
)
subnetMasks = (
255.255.255.255,
)
includedRoutes = (
{
destinationAddress = 1.1.1.1
destinationSubnetMask = 255.255.255.255
gatewayAddress = 100.100.100.17
},
{
destinationAddress = 2.2.2.0
destinationSubnetMask = 255.255.255.255
gatewayAddress = 100.100.100.17
},
{
destinationAddress = 11.11.11.0
destinationSubnetMask = 255.255.255.0
gatewayAddress = 100.100.100.17
},
)
excludedRoutes = (
{
destinationAddress = 170.114.52.2
destinationSubnetMask = 255.255.255.255
},
)
overridePrimary = NO
}
MTU = 1298
}
The problem is present on macOS Sequoia 15.2.
Is it a known issue? Did anyone else faced this issue?
The path from Network Extension’s in-provider networking APIs to Network framework has been long and somewhat rocky. The most common cause of confusion is NWEndpoint, where the same name can refer to two completely different types. I’ve helped a bunch of folks with this over the years, and I’ve decided to create this post to collect together all of those titbits.
If you have questions or comments, please put them in a new thread. Put it in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
NWEndpoint History and Advice
A tale that spans three APIs, two languages, and ten years.
The NWEndpoint type has a long and complex history, and if you’re not aware of that history you can bump into weird problems. The goal of this post is to explain the history and then offer advice on how to get around specific problems.
IMPORTANT This post focuses on NWEndpoint, because that’s the type that causes the most problems, but there’s a similar situation with NWPath.
The History
In iOS 9 Apple introduced the Network Extension (NE) framework, which offers a convenient way for developers to create a custom VPN transport. Network Extension types all have the NE prefix.
Note I’m gonna use iOS versions here, just to keep the text simple. If you’re targeting some other platform, use this handy conversion table:
iOS | macOS | tvOS | watchOS | visionOS
--- + ----- + ---- + ------- + --------
9 | 10.11 | 9 | 2 | -
12 | 10.14 | 12 | 5 | -
18 | 15 | 18 | 11 | 2
At that time we also introduced in-provider networking APIs. The idea was that an NE provider could uses these Objective-C APIs to communicate with its VPN server, and thereby avoiding a bunch of ugly BSD Sockets code.
The in-provider networking APIs were limited to NE providers. Specifically, the APIs to construct an in-provider connection were placed on types that were only usable within an NE provider. For example, a packet tunnel provider could create a NWTCPConnection object by calling -createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] and -createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate:, which are both methods on NEPacketTunnelProvider.
These in-provider networking APIs came with a number of ancillary types, including NWEndpoint and NWPath.
At the time we thought that we might promote these in-provider networking APIs to general-purpose networking APIs. That’s why the APIs use the NW prefix. For example, it’s NWTCPConnection, not NETCPConnection.
However, plans changed. In iOS 12 Apple shipped Network framework as our recommended general-purpose networking API. This actually includes two APIs:
A Swift API that follows Swift conventions, for example, the connection type is called NWConnection
A C API that follows C conventions, for example, the connection type is called nw_connection_t
These APIs follow similar design patterns to the in-provider networking API, and thus have similar ancillary types. Specifically, there are an NWEndpoint and nw_endpoint_t types, both of which perform a similar role to the NWEndpoint type in the in-provider networking API.
This was a source of some confusion in Swift, because the name NWEndpoint could refer to either the Network framework type or the Network Extension framework type, depending on what you’d included. Fortunately you could get around this by qualifying the type as either Network.NWEndpoint or NetworkExtension.NWEndpoint.
The arrival of Network framework meant that it no longer made sense to promote the in-provider networking APIs to general-purposes networking APIs. The in-provider networking APIs were on the path to deprecation.
However, deprecating these APIs was actually quite tricky. Network Extension framework uses these APIs in a number of interesting ways, and so deprecating them required adding replacements. In addition, we’d needed different replacements for Swift and Objective-C, because Network framework has separate APIs for Swift and C-based languages.
In iOS 18 we tackled that problem head on. To continue the NWTCPConnection example above, we replaced:
-createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] with nw_connection_t
-createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate: with nw_connection_t combined with a new virtualInterface property on NEPacketTunnelProvider
Of course that’s the Objective-C side of things. In Swift, the replacement is NWConnection rather than nw_connection_t, and the type of the virtualInterface property is NWInterface rather than nw_interface_t.
But that’s not the full story. For the two types that use the same name in both frameworks, NWEndpoint and NWPath, we decided to use this opportunity to sort out that confusion. To see how we did that, check out the <NetworkExtension/NetworkExtension.apinotes> file in the SDK. Focusing on NWEndpoint for the moment, you’ll find two entries:
…
- Name: NWEndpoint
SwiftPrivate: true
…
SwiftVersions:
- Version: 5.0
…
- Name: NWEndpoint
SwiftPrivate: false
…
The first entry applies when you’re building with the Swift 6 language mode. This marks the type as SwiftPrivate, which means that Swift imports it as __NWEndpoint. That frees up the NWEndpoint name to refer exclusively to the Network framework type.
The second entry applies when you’re building with the Swift 5 language mode. It marks the type as not SwiftPrivate. This is a compatible measure to ensure that code written for Swift 5 continues to build.
The Advice
This sections discusses specific cases in this transition.
NWEndpoint and NWPath
In Swift 5 language mode, NWEndpoint and NWPath might refer to either framework, depending on what you’ve imported. Add a qualifier if there’s any ambiguity, for example, Network.NWEndpoint or NetworkExtension.NWEndpoint.
In Swift 6 language mode, NWEndpoint and NWPath always refer to the Network framework type. Add a __ prefix to get to the Network Extension type. For example, use NWEndpoint for the Network framework type and __NWEndpoint for the Network Extension type.
Direct and Through-Tunnel TCP Connections in Swift
To create a connection directly, simply create an NWConnection. This support both TCP and UDP, with or without TLS.
To create a connection through the tunnel, replace code like this:
let c = self.createTCPConnectionThroughTunnel(…)
with code like this:
let params = NWParameters.tcp
params.requiredInterface = self.virtualInterface
let c = NWConnection(to: …, using: params)
This is for TCP but the same basic process applies to UDP.
UDP and App Proxies in Swift
If you’re building an app proxy, transparent proxy, or DNS proxy in Swift and need to handle UDP flows using the new API, adopt the NEAppProxyUDPFlowHandling protocol. So, replace code like this:
class AppProxyProvider: NEAppProxyProvider {
…
override func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteEndpoint remoteEndpoint: NWEndpoint) -> Bool {
…
}
}
with this:
class AppProxyProvider: NEAppProxyProvider, NEAppProxyUDPFlowHandling {
…
func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteFlowEndpoint remoteEndpoint: NWEndpoint) -> Bool {
…
}
}
Creating a Network Rule
To create an NWHostEndpoint, replace code like this:
let ep = NWHostEndpoint(hostname: "1.2.3.4", port: "12345")
let r = NENetworkRule(destinationHost: ep, protocol: .TCP)
with this:
let ep = NWEndpoint.hostPort(host: "1.2.3.4", port: 12345)
let r = NENetworkRule(destinationHostEndpoint: ep, protocol: .TCP)
Note how the first label of the initialiser has changed from destinationHost to destinationHostEndpoint.
If I run an app with a Message Filter Extension on a handset with iOS 18.2 then it runs fine, however if I run the exact same app with no changes on a different phone which has iOS 17.6.1 installed then the following error occurs when the extension is enabled within Settings:
dyld[631]: Symbol not found: _$sSo40ILMessageFilterCapabilitiesQueryResponseC14IdentityLookupE21promotionalSubActionsSaySo0abI6ActionVGvs
General:
Forums subtopic: App & System Services > Networking
TN3151 Choosing the right networking API
Networking Overview document — Despite the fact that this is in the archive, this is still really useful.
TLS for App Developers forums post
Choosing a Network Debugging Tool documentation
WWDC 2019 Session 712 Advances in Networking, Part 1 — This explains the concept of constrained networking, which is Apple’s preferred solution to questions like How do I check whether I’m on Wi-Fi?
TN3135 Low-level networking on watchOS
TN3179 Understanding local network privacy
Adapt to changing network conditions tech talk
Understanding Also-Ran Connections forums post
Extra-ordinary Networking forums post
Foundation networking:
Forums tags: Foundation, CFNetwork
URL Loading System documentation — NSURLSession, or URLSession in Swift, is the recommended API for HTTP[S] on Apple platforms.
Moving to Fewer, Larger Transfers forums post
Testing Background Session Code forums post
Network framework:
Forums tag: Network
Network framework documentation — Network framework is the recommended API for TCP, UDP, and QUIC on Apple platforms.
Building a custom peer-to-peer protocol sample code (aka TicTacToe)
Implementing netcat with Network Framework sample code (aka nwcat)
Configuring a Wi-Fi accessory to join a network sample code
Moving from Multipeer Connectivity to Network Framework forums post
NWEndpoint History and Advice forums post
Network Extension (including Wi-Fi on iOS):
See Network Extension Resources
Wi-Fi Fundamentals
TN3111 iOS Wi-Fi API overview
Wi-Fi Aware framework documentation
Wi-Fi on macOS:
Forums tag: Core WLAN
Core WLAN framework documentation
Wi-Fi Fundamentals
Secure networking:
Forums tags: Security
Apple Platform Security support document
Preventing Insecure Network Connections documentation — This is all about App Transport Security (ATS).
WWDC 2017 Session 701 Your Apps and Evolving Network Security Standards [1] — This is generally interesting, but the section starting at 17:40 is, AFAIK, the best information from Apple about how certificate revocation works on modern systems.
Available trusted root certificates for Apple operating systems support article
Requirements for trusted certificates in iOS 13 and macOS 10.15 support article
About upcoming limits on trusted certificates support article
Apple’s Certificate Transparency policy support article
What’s new for enterprise in iOS 18 support article — This discusses new key usage requirements.
Technote 2232 HTTPS Server Trust Evaluation
Technote 2326 Creating Certificates for TLS Testing
QA1948 HTTPS and Test Servers
Miscellaneous:
More network-related forums tags: 5G, QUIC, Bonjour
On FTP forums post
Using the Multicast Networking Additional Capability forums post
Investigating Network Latency Problems forums post
WirelessInsights framework documentation
iOS Network Signal Strength forums post
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
[1] This video is no longer available from Apple, but the URL should help you locate other sources of this info.
ios構成プロファイルの制限のallowCloudPrivateRelayのプライベートリレーの制御とRelayペイロードの機能は関係がありますか?
それとも別々の機能でしょうか?
↓
s there a relationship between the private relay control in the iOS configuration profile restriction allowCloudPrivateRelay and the functionality of the Relay payload?
Or are they separate features?
Topic:
App & System Services
SubTopic:
Networking
Hi all,
I work on a smart product that, for setup, uses a captive portal to allow users to connect and configure the device.
It emits a WiFi network and runs a captive portal - an HTTP server operates at 10.0.0.1, and a DNS server responds to all requests with 10.0.0.1 to direct "any and all" request to the server.
When iOS devices connect, they send a request to captive.apple.com/hotspot-detect.html; if it returns success, that means they're on the internet; if not, the typical behavior in the past has been to assume you're connected to a captive portal and display what's being served.
I serve any requests to /hotspot-detect.html with my captive portal page (index.html).
This has worked reliably on iOS18 for a long time (user selects my products WiFi network, iOS detects portal and opens it).
But almost everyone who's now trying with iOS26 is having the "automatic pop up" behavior fail - usually it says "Error opening page - Hotspot login cannot open the page because the network connection was lost." However, if opening safari and navigating to any URL (or 10.0.0.1) the portal loads - it's just the iOS auto-detect and open that's not working
iOS18 always succeeds; iOS26 always fails.
Anybody have any idea what changes may have been introduced in iOS26 on this front, or anything I can do to help prompt or coax iOS26 into loading the portal? It typically starts reading, but then stops mid-read.
Topic:
App & System Services
SubTopic:
Networking
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Working with a Wi-Fi Accessory
Building an app that works with a Wi-Fi accessory presents specific challenges. This post discusses those challenges and some recommendations for how to address them.
Note While my focus here is iOS, much of the info in this post applies to all Apple platforms.
IMPORTANT iOS 18 introduced AccessorySetupKit, a framework to simplify the discovery and configuration of an accessory. I’m not fully up to speed on that framework myself, but I encourage you to watch WWDC 2024 Session 10203 Meet AccessorySetupKit and read the framework documentation.
IMPORTANT iOS 26 introduced WiFiAware, a framework for setting up communication with Wi-Fi Aware accessories. Wi-Fi Aware is an industry standard to securely discover, pair, and communicate with nearby devices. This is especially useful for stand-alone accessories (defined below). For more on this framework, watch WWDC 2025 Session 228 Supercharge device connectivity with Wi-Fi Aware and read the framework documentation. For information on how to create a Wi-Fi Aware accessory that works with iPhone, go to Developer > Accessories, download Accessory Design Guidelines for Apple Devices, and review the Wi-Fi Aware chapter.
Accessory Categories
I classify Wi-Fi accessories into three different categories.
A bound accessory is ultimately intended to join the user’s Wi-Fi network. It may publish its own Wi-Fi network during the setup process, but the goal of that process is to get the accessory on to the existing network. Once that’s done, your app interacts with the accessory using ordinary networking APIs.
An example of a bound accessory is a Wi-Fi capable printer.
A stand-alone accessory publishes a Wi-Fi network at all times. An iOS device joins that network so that your app can interact with it. The accessory never provides access to the wider Internet.
An example of a stand-alone accessory is a video camera that users take with them into the field. You might want to write an app that joins the camera’s network and downloads footage from it.
A gateway accessory is one that publishes a Wi-Fi network that provides access to the wider Internet. Your app might need to interact with the accessory during the setup process, but after that it’s useful as is.
An example of this is a Wi-Fi to WWAN gateway.
Not all accessories fall neatly into these categories. Indeed, some accessories might fit into multiple categories, or transition between categories. Still, I’ve found these categories to be helpful when discussing various accessory integration challenges.
Do You Control the Firmware?
The key question here is Do you control the accessory’s firmware? If so, you have a bunch of extra options that will make your life easier. If not, you have to adapt to whatever the accessory’s current firmware does.
Simple Improvements
If you do control the firmware, I strongly encourage you to:
Support IPv6
Implement Bonjour [1]
These two things are quite easy to do — most embedded platforms support them directly, so it’s just a question of turning them on — and they will make your life significantly easier:
Link-local addresses are intrinsic to IPv6, and IPv6 is intrinsic to Apple platforms. If your accessory supports IPv6, you’ll always be able to communicate with it, regardless of how messed up the IPv4 configuration gets.
Similarly, if you support Bonjour, you’ll always be able to find your accessory on the network.
[1] Bonjour is an Apple term for three Internet standards:
RFC 3927 Dynamic Configuration of IPv4 Link-Local Addresses
RFC 6762 Multicast DNS
RFC 6763 DNS-Based Service Discovery
WAC
For a bound accessory, support Wireless Accessory Configuration (WAC). This is a relatively big ask — supporting WAC requires you to join the MFi Program — but it has some huge benefits:
You don’t need to write an app to configure your accessory. The user will be able to do it directly from Settings.
If you do write an app, you can use the EAWiFiUnconfiguredAccessoryBrowser class to simplify your configuration process.
HomeKit
For a bound accessory that works in the user’s home, consider supporting HomeKit. This yields the same onboarding benefits as WAC, and many other benefits as well. Also, you can get started with the HomeKit Open Source Accessory Development Kit (ADK).
Bluetooth LE
If your accessory supports Bluetooth LE, think about how you can use that to improve your app’s user experience. For an example of that, see SSID Scanning, below.
Claiming the Default Route, Or Not?
If your accessory publishes a Wi-Fi network, a key design decision is whether to stand up enough infrastructure for an iOS device to make it the default route.
IMPORTANT To learn more about how iOS makes the decision to switch the default route, see The iOS Wi-Fi Lifecycle and Network Interface Concepts.
This decision has significant implications. If the accessory’s network becomes the default route, most network connections from iOS will be routed to your accessory. If it doesn’t provide a path to the wider Internet, those connections will fail. That includes connections made by your own app.
Note It’s possible to get around this by forcing your network connections to run over WWAN. See Binding to an Interface in Network Interface Techniques and Running an HTTP Request over WWAN. Of course, this only works if the user has WWAN. It won’t help most iPad users, for example.
OTOH, if your accessory’s network doesn’t become the default route, you’ll see other issues. iOS will not auto-join such a network so, if the user locks their device, they’ll have to manually join the network again.
In my experience a lot of accessories choose to become the default route in situations where they shouldn’t. For example, a bound accessory is never going to be able to provide a path to the wider Internet so it probably shouldn’t become the default route. However, there are cases where it absolutely makes sense, the most obvious being that of a gateway accessory.
Acting as a Captive Network, or Not?
If your accessory becomes the default route you must then decide whether to act like a captive network or not.
IMPORTANT To learn more about how iOS determines whether a network is captive, see The iOS Wi-Fi Lifecycle.
For bound and stand-alone accessories, becoming a captive network is generally a bad idea. When the user joins your network, the captive network UI comes up and they have to successfully complete it to stay on the network. If they cancel out, iOS will leave the network. That makes it hard for the user to run your app while their iOS device is on your accessory’s network.
In contrast, it’s more reasonable for a gateway accessory to act as a captive network.
SSID Scanning
Many developers think that TN3111 iOS Wi-Fi API overview is lying when it says:
iOS does not have a general-purpose API for Wi-Fi scanning
It is not.
Many developers think that the Hotspot Helper API is a panacea that will fix all their Wi-Fi accessory integration issues, if only they could get the entitlement to use it.
It will not.
Note this comment in the official docs:
NEHotspotHelper is only useful for hotspot integration. There are both technical and business restrictions that prevent it from being used for other tasks, such as accessory integration or Wi-Fi based location.
Even if you had the entitlement you would run into these technical restrictions. The API was specifically designed to support hotspot navigation — in this context hotspots are “Wi-Fi networks where the user must interact with the network to gain access to the wider Internet” — and it does not give you access to on-demand real-time Wi-Fi scan results.
Many developers look at another developer’s app, see that it’s displaying real-time Wi-Fi scan results, and think there’s some special deal with Apple that’ll make that work.
There is not.
In reality, Wi-Fi accessory developers have come up with a variety of creative approaches for this, including:
If you have a bound accessory, you might add WAC support, which makes this whole issue go away.
In many cases, you can avoid the need for Wi-Fi scan results by adopting AccessorySetupKit.
You might build your accessory with a barcode containing the info required to join its network, and scan that from your app. This is the premise behind the Configuring a Wi-Fi Accessory to Join the User’s Network sample code.
You might configure all your accessories to have a common SSID prefix, and then take advantage of the prefix support in NEHotspotConfigurationManager. See Programmatically Joining a Network, below.
You might have your app talk to your accessory via some other means, like Bluetooth LE, and have the accessory scan for Wi-Fi networks and return the results.
Programmatically Joining a Network
Network Extension framework has an API, NEHotspotConfigurationManager, to programmatically join a network, either temporarily or as a known network that supports auto-join. For the details, see Wi-Fi Configuration.
One feature that’s particularly useful is it’s prefix support, allowing you to create a configuration that’ll join any network with a specific prefix. See the init(ssidPrefix:) initialiser for the details.
For examples of how to use this API, see:
Configuring a Wi-Fi Accessory to Join the User’s Network — It shows all the steps for one approach for getting a non-WAC bound accessory on to the user’s network.
NEHotspotConfiguration Sample — Use this to explore the API in general.
Secure Communication
Users expect all network communication to be done securely. For some ideas on how to set up a secure connection to an accessory, see TLS For Accessory Developers.
Revision History
2025-11-05 Added a link to the Accessory Design Guidelines for Apple Devices.
2025-06-19 Added a preliminary discussion of Wi-Fi Aware.
2024-09-12 Improved the discussion of AccessorySetupKit.
2024-07-16 Added a preliminary discussion of AccessorySetupKit.
2023-10-11 Added the HomeKit section. Fixed the link in Secure Communication to point to TLS For Accessory Developers.
2023-07-23 First posted.
Is Apple's Wi-Fi Aware certified by the Wi-Fi Alliance?
Is there any non-compliance of Apple's Wi-Fi Aware with the Wi-Fi Alliance standards?
Does Apple have a roadmap to switch AWDL to Wi-Fi Aware?
Does Apple have plans to adopt Wi-Fi Aware in Mac computers?
Every now and again folks notice that Network framework seems to create an unexpected number of connections on the wire. This post explains why that happens and what you should do about it.
If you have questions or comments, put them in a new thread here on the forums. Use the App & System Services > Networking topic area and the Network tag.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Understanding Also-Ran Connections
Network framework implements the Happy Eyeballs algorithm. That might create more on-the-wire connections than you expect. There are two common places where folks notice this:
When looking at a packet trace
When implementing a listener
Imagine that you’ve implemented a TCP server using NWListener and you connect to it from a client using NWConnection. In many situations there are multiple network paths between the client and the server. For example, on a local network there’s always at least two paths: the link-local IPv6 path and either an infrastructure IPv4 path or the link-local IPv4 path.
When you start your NWConnection, Network framework’s Happy Eyeballs algorithm might [1] start a TCP connection for each of these paths. It then races those connections. The one that connects first is the ‘winner’, and Network framework uses that connection for your traffic. Once it has a winner, the other connections, the also-ran connections, are redundant, and Network framework just closes them.
You can observe this behaviour on the client side by looking in the system log. Many Network framework log entries (subsystem com.apple.network) contain a connection identifier. For example C8 is the eighth connection started by this process. Each connection may have child connections (C8.1, C8.2, …) and grandchild connections (C8.1.1, C8.1.2, …), and so on. You’ll see state transitions for these child connections occurring in parallel. For example, the following log entries show that C8 is racing the connection of two grandchild connections, C8.1.1 and C8.1.2:
type: debug
time: 12:22:26.825331+0100
process: TestAlsoRanConnections
subsystem: com.apple.network
category: connection
message: nw_socket_connect [C8.1.1:1] Calling connectx(…)
type: debug
time: 12:22:26.964150+0100
process: TestAlsoRanConnections
subsystem: com.apple.network
category: connection
message: nw_socket_connect [C8.1.2:1] Calling connectx(…)
Note For more information about accessing the system log, see Your Friend the System Log.
You also see this on the server side, but in this case each connection is visible to your code. When you connect from the client, Network framework calls your listener’s new connection handler with multiple connections. One of those is the winning connection and you’ll receive traffic on it. The others are the also-ran connections, and they close promptly.
IMPORTANT Depending on network conditions there may be no also-ran connections. Or there may be lots of them. If you want to test the also-ran connection case, use Network Link Conditioner to add a bunch of delay to your packets.
You don’t need to write special code to handle also-ran connections. From the perspective of your listener, these are simply connections that open and then immediately close. There’s no difference between an also-ran connection and, say, a connection from a client that immediately crashes. Or a connection generated by someone doing a port scan. Your server must be resilient to such things.
However, the presence of these also-ran connections can be confusing, especially if you’re just getting started with Network framework, and hence this post.
[1] This is “might” because the exact behaviour depends on network conditions. More on that below.
This is just an FYI in case someone else runs into this problem.
This afternoon (12 Dec 2025), I updated to macOS 26.2 and lost my network.
The System Settings' Wi-Fi light was green and said it was connected, but traceroute showed "No route to host".
I turned Wi-Fi on & off.
I rebooted the Mac.
I rebooted the eero network.
I switched to tethering to my iPhone.
I switched to physical ethernet cable.
Nothing worked.
Then I remembered I had a beta of an app with a network system extension that was distributed through TestFlight.
I deleted the app, and networking came right back.
I had this same problem ~2 years ago. Same story:
app with network system extension + TestFlight + macOS update = lost network.
(My TestFlight build might have expired, but I'm not certain)
I don't know if anyone else has had this problem, but I thought I'd share this in case it helps.
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Network Interface APIs
Most developers don’t need to interact directly with network interfaces. If you do, read this post for a summary of the APIs available to you.
Before you read this, read Network Interface Concepts.
Interface List
The standard way to get a list of interfaces and their addresses is getifaddrs. To learn more about this API, see its man page.
A network interface has four fundamental attributes:
A set of flags — These are packed into a CUnsignedInt. The flags bits are declared in <net/if.h>, starting with IFF_UP.
An interface type — See Network Interface Type, below.
An interface index — Valid indexes are greater than 0.
A BSD interface name. For example, an Ethernet interface might be called en0. The interface name is shared between multiple network interfaces running over a given hardware interface. For example, IPv4 and IPv6 running over that Ethernet interface will both have the name en0.
WARNING BSD interface names are not considered API. There’s no guarantee, for example, that an iPhone’s Wi-Fi interface is en0.
You can map between the last two using if_indextoname and if_nametoindex. See the if_indextoname man page for details.
An interface may also have address information. If present, this always includes the interface address (ifa_addr) and the network mask (ifa_netmask). In addition:
Broadcast-capable interfaces (IFF_BROADCAST) have a broadcast address (ifa_broadaddr, which is an alias for ifa_dstaddr).
Point-to-point interfaces (IFF_POINTOPOINT) have a destination address (ifa_dstaddr).
Calling getifaddrs from Swift is a bit tricky. For an example of this, see QSocket: Interfaces.
IP Address List
Once you have getifaddrs working, it’s relatively easy to manipulate the results to build a list of just IP addresses, a list of IP addresses for each interface, and so on. QSocket: Interfaces has some Swift snippets that show this.
Interface List Updates
The interface list can change over time. Hardware interfaces can be added and removed, network interfaces come up and go down, and their addresses can change. It’s best to avoid caching information from getifaddrs. If thats unavoidable, use the kNotifySCNetworkChange Darwin notification to update your cache. For information about registering for Darwin notifications, see the notify man page (in section 3).
This notification just tells you that something has changed. It’s up to you to fetch the new interface list and adjust your cache accordingly.
You’ll find that this notification is sometimes posted numerous times in rapid succession. To avoid unnecessary thrashing, debounce it.
While the Darwin notification API is easy to call from Swift, Swift does not import kNotifySCNetworkChange. To fix that, define that value yourself, calling a C function to get the value:
var kNotifySCNetworkChange: UnsafePointer<CChar> {
networkChangeNotifyKey()
}
Here’s what that C function looks like:
extern const char * networkChangeNotifyKey(void) {
return kNotifySCNetworkChange;
}
Network Interface Type
There are two ways to think about a network interface’s type. Historically there were a wide variety of weird and wonderful types of network interfaces. The following code gets this legacy value for a specific BSD interface name:
func legacyTypeForInterfaceNamed(_ name: String) -> UInt8? {
var addrList: UnsafeMutablePointer<ifaddrs>? = nil
let err = getifaddrs(&addrList)
// In theory we could check `errno` here but, honestly, what are gonna
// do with that info?
guard
err >= 0,
let first = addrList
else { return nil }
defer { freeifaddrs(addrList) }
return sequence(first: first, next: { $0.pointee.ifa_next })
.compactMap { addr in
guard
let nameC = addr.pointee.ifa_name,
name == String(cString: nameC),
let sa = addr.pointee.ifa_addr,
sa.pointee.sa_family == AF_LINK,
let data = addr.pointee.ifa_data
else { return nil }
return data.assumingMemoryBound(to: if_data.self).pointee.ifi_type
}
.first
}
The values are defined in <net/if_types.h>, starting with IFT_OTHER.
However, this value is rarely useful because many interfaces ‘look like’ Ethernet and thus have a type of IFT_ETHER.
Network framework has the concept of an interface’s functional type. This is an indication of how the interface fits into the system. There are two ways to get an interface’s functional type:
If you’re using Network framework and have an NWInterface value, get the type property.
If not, call ioctl with a SIOCGIFFUNCTIONALTYPE request. The return values are defined in <net/if.h>, starting with IFRTYPE_FUNCTIONAL_UNKNOWN.
Swift does not import SIOCGIFFUNCTIONALTYPE, so it’s best to write this code in a C:
extern uint32_t functionalTypeForInterfaceNamed(const char * name) {
int fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd < 0) { return IFRTYPE_FUNCTIONAL_UNKNOWN; }
struct ifreq ifr = {};
strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name));
bool success = ioctl(fd, SIOCGIFFUNCTIONALTYPE, &ifr) >= 0;
int junk = close(fd);
assert(junk == 0);
if ( ! success ) { return IFRTYPE_FUNCTIONAL_UNKNOWN; }
return ifr.ifr_ifru.ifru_functional_type;
}
Finally, TN3158 Resolving Xcode 15 device connection issues documents the SIOCGIFDIRECTLINK flag as a specific way to identify the network interfaces uses by Xcode for device connection traffic.
Revision History
2025-12-10 Added info about SIOCGIFDIRECTLINK.
2023-07-19 First posted.
How often do we see control filter start and stop?
I read somewhere that data filter is long lived and control Filter is short lived.
When does the operating system kills the control filter process?
Transport Layer Security (TLS) is the most important security protocol on the Internet today. Most notably, TLS puts the S into HTTPS, adding security to the otherwise insecure HTTP protocol.
IMPORTANT TLS is the successor to the Secure Sockets Layer (SSL) protocol. SSL is no longer considered secure and it’s now rarely used in practice, although many folks still say SSL when they mean TLS.
TLS is a complex protocol. Much of that complexity is hidden from app developers but there are places where it’s important to understand specific details of the protocol in order to meet your requirements. This post explains the fundamentals of TLS, concentrating on the issues that most often confuse app developers.
Note The focus of this is TLS-PKI, where PKI stands for public key infrastructure. This is the standard TLS as deployed on the wider Internet. There’s another flavour of TLS, TLS-PSK, where PSK stands for pre-shared key. This has a variety of uses, but an Apple platforms we most commonly see it with local traffic, for example, to talk to a Wi-Fi based accessory. For more on how to use TLS, both TLS-PKI and TLS-PSK, in a local context, see TLS For Accessory Developers.
Server Certificates
For standard TLS to work the server must have a digital identity, that is, the combination of a certificate and the private key matching the public key embedded in that certificate. TLS Crypto Magic™ ensures that:
The client gets a copy of the server’s certificate.
The client knows that the server holds the private key matching the public key in that certificate.
In a typical TLS handshake the server passes the client a list of certificates, where item 0 is the server’s certificate (the leaf certificate), item N is (optionally) the certificate of the certificate authority that ultimately issued that certificate (the root certificate), and items 1 through N-1 are any intermediate certificates required to build a cryptographic chain of trust from 0 to N.
Note The cryptographic chain of trust is established by means of digital signatures. Certificate X in the chain is issued by certificate X+1. The owner of certificate X+1 uses their private key to digitally sign certificate X. The client verifies this signature using the public key embedded in certificate X+1. Eventually this chain terminates in a trusted anchor, that is, a certificate that the client trusts by default. Typically this anchor is a self-signed root certificate from a certificate authority.
Note Item N is optional for reasons I’ll explain below. Also, the list of intermediate certificates may be empty (in the case where the root certificate directly issued the leaf certificate) but that’s uncommon for servers in the real world.
Once the client gets the server’s certificate, it evaluates trust on that certificate to confirm that it’s talking to the right server. There are three levels of trust evaluation here:
Basic X.509 trust evaluation checks that there’s a cryptographic chain of trust from the leaf through the intermediates to a trusted root certificate. The client has a set of trusted root certificates built in (these are from well-known certificate authorities, or CAs), and a site admin can add more via a configuration profile.
This step also checks that none of the certificates have expired, and various other more technical criteria (like the Basic Constraints extension).
Note This explains why the server does not have to include the root certificate in the list of certificates it passes to the client; the client has to have the root certificate installed if trust evaluation is to succeed.
In addition, TLS trust evaluation (per RFC 2818) checks that the DNS name that you connected to matches the DNS name in the certificate. Specifically, the DNS name must be listed in the Subject Alternative Name extension.
Note The Subject Alternative Name extension can also contain IP addresses, although that’s a much less well-trodden path. Also, historically it was common to accept DNS names in the Common Name element of the Subject but that is no longer the case on Apple platforms.
App Transport Security (ATS) adds its own security checks.
Basic X.509 and TLS trust evaluation are done for all TLS connections. ATS is only done on TLS connections made by URLSession and things layered on top URLSession (like WKWebView). In many situations you can override trust evaluation; for details, see Technote 2232 HTTPS Server Trust Evaluation). Such overrides can either tighten or loosen security. For example:
You might tighten security by checking that the server certificate was issued by a specific CA. That way, if someone manages to convince a poorly-managed CA to issue them a certificate for your server, you can detect that and fail.
You might loosen security by adding your own CA’s root certificate as a trusted anchor.
IMPORTANT If you rely on loosened security you have to disable ATS. If you leave ATS enabled, it requires that the default server trust evaluation succeeds regardless of any customisations you do.
Mutual TLS
The previous section discusses server trust evaluation, which is required for all standard TLS connections. That process describes how the client decides whether to trust the server. Mutual TLS (mTLS) is the opposite of that, that is, it’s the process by which the server decides whether to trust the client.
Note mTLS is commonly called client certificate authentication. I avoid that term because of the ongoing industry-wide confusion between certificates and digital identities. While it’s true that, in mTLS, the server authenticates the client certificate, to set this up on the client you need a digital identity, not a certificate.
mTLS authentication is optional. The server must request a certificate from the client and the client may choose to supply one or not (although if the server requests a certificate and the client doesn’t supply one it’s likely that the server will then fail the connection).
At the TLS protocol level this works much like it does with the server certificate. For the client to provide this certificate it must apply a digital identity, known as the client identity, to the connection. TLS Crypto Magic™ assures the server that, if it gets a certificate from the client, the client holds the private key associated with that certificate.
Where things diverge is in trust evaluation. Trust evaluation of the client certificate is done on the server, and the server uses its own rules to decided whether to trust a specific client certificate. For example:
Some servers do basic X.509 trust evaluation and then check that the chain of trust leads to one specific root certificate; that is, a client is trusted if it holds a digital identity whose certificate was issued by a specific CA.
Some servers just check the certificate against a list of known trusted client certificates.
When the client sends its certificate to the server it actually sends a list of certificates, much as I’ve described above for the server’s certificates. In many cases the client only needs to send item 0, that is, its leaf certificate. That’s because:
The server already has the intermediate certificates required to build a chain of trust from that leaf to its root.
There’s no point sending the root, as I discussed above in the context of server trust evaluation.
However, there are no hard and fast rules here; the server does its client trust evaluation using its own internal logic, and it’s possible that this logic might require the client to present intermediates, or indeed present the root certificate even though it’s typically redundant. If you have problems with this, you’ll have to ask the folks running the server to explain its requirements.
Note If you need to send additional certificates to the server, pass them to the certificates parameter of the method you use to create your URLCredential (typically init(identity:certificates:persistence:)).
One thing that bears repeating is that trust evaluation of the client certificate is done on the server, not the client. The client doesn’t care whether the client certificate is trusted or not. Rather, it simply passes that certificate the server and it’s up to the server to make that decision.
When a server requests a certificate from the client, it may supply a list of acceptable certificate authorities [1]. Safari uses this to filter the list of client identities it presents to the user. If you are building an HTTPS server and find that Safari doesn’t show the expected client identity, make sure you have this configured correctly. If you’re building an iOS app and want to implement a filter like Safari’s, get this list using:
The distinguishedNames property, if you’re using URLSession
The sec_protocol_metadata_access_distinguished_names routine, if you’re using Network framework
[1] See the certificate_authorities field in Section 7.4.4 of RFC 5246, and equivalent features in other TLS versions.
Self-Signed Certificates
Self-signed certificates are an ongoing source of problems with TLS. There’s only one unequivocally correct place to use a self-signed certificate: the trusted anchor provided by a certificate authority.
One place where a self-signed certificate might make sense is in a local environment, that is, securing a connection between peers without any centralised infrastructure. However, depending on the specific circumstances there may be a better option. TLS For Accessory Developers discusses this topic in detail.
Finally, it’s common for folks to use self-signed certificates for testing. I’m not a fan of that approach. Rather, I recommend the approach described in QA1948 HTTPS and Test Servers. For advice on how to set that up using just your Mac, see TN2326 Creating Certificates for TLS Testing.
TLS Standards
RFC 6101 The Secure Sockets Layer (SSL) Protocol Version 3.0 (historic)
RFC 2246 The TLS Protocol Version 1.0
RFC 4346 The Transport Layer Security (TLS) Protocol Version 1.1
RFC 5246 The Transport Layer Security (TLS) Protocol Version 1.2
RFC 8446 The Transport Layer Security (TLS) Protocol Version 1.3
RFC 4347 Datagram Transport Layer Security
RFC 6347 Datagram Transport Layer Security Version 1.2
RFC 9147 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Revision History:
2025-11-21 Clearly defined the terms TLS-PKI and TLS-PSK.
2024-03-19 Adopted the term mutual TLS in preference to client certificate authentication throughout, because the latter feeds into the ongoing certificate versus digital identity confusion. Defined the term client identity. Added the Self-Signed Certificates section. Made other minor editorial changes.
2023-02-28 Added an explanation mTLS acceptable certificate authorities.
2022-12-02 Added links to the DTLS RFCs.
2022-08-24 Added links to the TLS RFCs. Made other minor editorial changes.
2022-06-03 Added a link to TLS For Accessory Developers.
2021-02-26 Fixed the formatting. Clarified that ATS only applies to URLSession. Minor editorial changes.
2020-04-17 Updated the discussion of Subject Alternative Name to account for changes in the 2019 OS releases. Minor editorial updates.
2018-10-29 Minor editorial updates.
2016-11-11 First posted.
My external device can generate a fixed Wi-Fi network. When I connect to this Wi-Fi using my iPhone 17 Pro Max (iOS version 26.0.1), and my app tries to establish a connection using the following method, this method returns -1
int connect(int, const struct sockaddr *, socklen_t) __DARWIN_ALIAS_C(connect);
However, when I use other phones, such as iPhone 12, iPhone 8, iPhone 11, etc., to connect to this external device, the above method always returns successfully, with the parameters passed to the method remaining the same.
I also tried resetting the network settings on the iPhone 17 Pro Max (iOS version 26.0.1), but it still cannot establish a connection.
Topic:
App & System Services
SubTopic:
Networking
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
On Host Names
I commonly see questions like How do I get the device’s host name? This question doesn’t make sense without more context. Apple systems have a variety of things that you might consider to be the host name:
The user-assigned device name — This is a user-visible value, for example, Guy Smiley. People set this in Settings > General > About > Name.
The local host name — This is a DNS name used by Bonjour, for example, guy-smiley.local. By default this is algorithmically derived from the user-assigned device name. On macOS, people can override this in Settings > General > Sharing > Local hostname.
The reverse DNS name associated with the various IP addresses assigned to the device’s various network interfaces
That last one is pretty much useless. You can’t get a single host name because there isn’t a single IP address. For more on that, see Don’t Try to Get the Device’s IP Address.
The other two have well-defined answers, although those answers vary by platform. I’ll talk more about that below.
Before getting to that, however, let’s look at the big picture.
Big Picture
The use cases for the user-assigned device name are pretty clear. I rarely see folks confused about that.
Another use case for this stuff is that you’ve started a server and you want to tell the user how to connect to it. I discuss this in detail in Showing Connection Information in an iOS Server.
However, most folks who run into problems like this do so because they’re suffering from one of the following misconceptions:
The device has a DNS name.
Its DNS name is unique.
Its DNS name doesn’t change.
Its DNS name is in some way useful for networking.
Some of these may be true in some specific circumstances, but none of them are true in all circumstances.
These issues are not unique to Apple platforms — if you look at the Posix spec for gethostname, it says nothing about DNS! — but folks tend to notice these problems more on Apple platforms because Apple devices are often deployed to highly dynamic network environments.
So, before you start using the APIs discussed in this post, think carefully about your assumptions.
And if you actually do want to work with DNS, there are two cases to consider:
If you’re looking for the local host name, use the APIs discussed above.
In other cases, it’s likely that the APIs in this post will not be helpful and you’d be better off focusing on DNS APIs [1].
[1] The API I recommend for this is DNS-SD. See the DNS section in TN3151 Choosing the right networking API.
macOS
To get the user-assigned device name, call the SCDynamicStoreCopyComputerName(_:_:) function. For example:
let userAssignedDeviceName = SCDynamicStoreCopyComputerName(nil, nil) as String?
To get the local host name, call the SCDynamicStoreCopyLocalHostName(_:) function. For example:
let localHostName = SCDynamicStoreCopyLocalHostName(nil) as String?
IMPORTANT This returns just the name label. To form a local host name, append .local..
Both routines return an optional result; code defensively!
If you’re displaying these values to the user, use the System Configuration framework dynamic store notification mechanism to keep your UI up to date.
iOS and Friends
On iOS, iPadOS, tvOS, and visionOS, get the user-assigned device name from the name property on UIDevice.
IMPORTANT Access to this is now restricted. For more on that, see the documentation for the com.apple.developer.device-information.user-assigned-device-name entitlement.
There is no direct mechanism to get the local host name.
Other APIs
There are a wide variety of other APIs that purport to return the host name. These include:
gethostname
The name property on NSHost [1]
The hostName property on NSProcessInfo (ProcessInfo in Swift)
These are problematic for a number of reasons:
They have a complex implementation that makes it hard to predict what value you’ll get back.
They might end up trying to infer the host name from the network environment.
The existing behaviour is hard to change due to compatibility concerns.
Some of them are marked as to-be-deprecated.
IMPORTANT The second issue is particularly problematic, because it involves synchronous DNS requests [2]. That’s slow in general. Worse yet, if the network environment is restricted in some way, these calls can be very slow, taking about 30 seconds to time out.
Given these problems, it’s generally best to avoid calling these routines at all.
[1] It also has a names property, which is a little closer to reality but still not particularly useful.
[2] Actually, that’s not true for gethostname. Rather, that call just returns whatever was last set by sethostname. This is always fast. The System Configuration framework infrastructure calls sethostname to update the host name as the system state changes.
Esim activation. Assuming I already have card data, I use the universal link https://esimsetup.apple.com/esim_qrcode_provisioning?carddata= to install it.
However, it always ends up in the system Settings app.
The flow: 1. Click the link -> 2. Redirect to Settings -> 3. Show activation dialog.
Is there anyway to make the activation flow stay within the app? I couldn't find any documentation for that.
This is an example from Revolut app, where the whole flow above happens without leaving the app.
I asked this question of AI and it said that yes it was possible, and gave some sample code
override class func filterConfiguration() -> ILMessageFilterExtensionConfiguration {
let config = ILMessageFilterExtensionConfiguration()
// You can specify multiple network URLs
config.networkURLs = [
URL(string: "https://api1.example.com/filter")!,
URL(string: "https://api2.example.com/filter")!
]
return config
}
And said the OS will try the first, and if there's no response within the first few seconds it'll move onto the second.
However, there is no such class as ILMessageFilterExtensionConfiguration AFAICT, if there is then how to access/use it, if there isn't, then I wonder how the AI counjured it up?
If multiple urls can be specified, then can the extension also specify a particular API to use and switch between them at some point?
When does the OS call filterConfiguration()?
This is a topic that’s come up a few times on the forums, so I thought I’d write up a summary of the issues I’m aware of. If you have questions or comments, start a new thread in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Network Extension Provider Packaging
There are two ways to package a network extension provider:
App extension ( appex )
System extension ( sysex )
Different provider types support different packaging on different platforms. See TN3134 Network Extension provider deployment for the details.
Some providers, most notably packet tunnel providers on macOS, support both appex and sysex packaging. Sysex packaging has a number of advantages:
It supports direct distribution, using Developer ID signing.
It better matches the networking stack on macOS. An appex is tied to the logged in user, whereas a sysex, and the networking stack itself, is global to the system as a whole.
Given that, it generally makes sense to package your Network Extension (NE) provider as a sysex on macOS. If you’re creating a new product that’s fine, but if you have an existing iOS product that you want to bring to macOS, you have to account for the differences brought on by the move to sysex packaging. Similarly, if you have an existing sysex product on macOS that you want to bring to iOS, you have to account for the appex packaging. This post summarises those changes.
Keep the following in mind while reading this post:
The information here applies to all NE providers that can be packaged as either an appex or a sysex. When this post uses a specific provider type in an example, it’s just an example.
Unless otherwise noted, any information about iOS also applies to iPadOS, tvOS, and visionOS.
Process Lifecycle
With appex packaging, the system typically starts a new process for each instance of your NE provider. For example, with a packet tunnel provider:
When the users starts the VPN, the system creates a process and then instantiates and starts the NE provider in that process.
When the user stops the VPN, the system stops the NE provider and then terminates the process running it.
If the user starts the VPN again, the system creates an entirely new process and instantiates and starts the NE provider in that.
In contrast, with sysex packaging there’s typically a single process that runs all off the sysex’s NE providers. Returning to the packet tunnel provider example:
When the users starts the VPN, the system instantiates and starts the NE provider in the sysex process.
When the user stops the VPN, the system stops and deallocates the NE provider instances, but leaves the sysex process running.
If the user starts the VPN again, the system instantiates and starts a new instances of the NE provider in the sysex process.
This lifecycle reflects how the system runs the NE provider, which in turn has important consequences on what the NE provider can do:
An appex acts like a launchd agent [1], in that it runs in a user context and has access to that user’s state.
A sysex is effectively a launchd daemon. It runs in a context that’s global to the system as a whole. It does not have access to any single user’s state. Indeed, there might be no user logged in, or multiple users logged in.
The following sections explore some consequences of the NE provider lifecycle.
[1] It’s not actually run as a launchd agent. Rather, there’s a system launchd agent that acts as the host for the app extension.
App Groups
With an app extension, the app extension and its container app run as the same user. Thus it’s trivial to share state between them using an app group container.
Note When talking about extensions on Apple platforms, the container app is the app in which the extension is embedded and the host app is the app using the extension. For network extensions the host app is the system itself.
That’s not the case with a system extension. The system extension runs as root whereas the container app runs an the user who launched it. While both programs can claim access to the same app group, the app group container location they receive will be different. For the system extension that location will be inside the home directory for the root user. For the container app the location will be inside the home directory of the user who launched it.
This does not mean that app groups are useless in a Network Extension app. App groups are also a factor in communicating between the container app and its extensions, the subject of the next section.
IMPORTANT App groups have a long and complex history on macOS. For the full story, see App Groups: macOS vs iOS: Working Towards Harmony.
Communicating with Extensions
With an app extension there are two communication options:
App-provider messages
App groups
App-provider messages are supported by NE directly. In the container app, send a message to the provider by calling sendProviderMessage(_:responseHandler:) method. In the appex, receive that message by overriding the handleAppMessage(_:completionHandler:) method.
An appex can also implement inter-process communication (IPC) using various system IPC primitives. Both the container app and the appex claim access to the app group via the com.apple.security.application-groups entitlement. They can then set up IPC using various APIs, as explain in the documentation for that entitlement.
With a system extension the story is very different. App-provider messages are supported, but they are rarely used. Rather, most products use XPC for their communication. In the sysex, publish a named XPC endpoint by setting the NEMachServiceName property in its Info.plist. Listen for XPC connections on that endpoint using the XPC API of your choice.
Note For more information about the available XPC APIs, see XPC Resources.
In the container app, connect to that named XPC endpoint using the XPC Mach service name API. For example, with NSXPCConnection, initialise the connection with init(machServiceName:options:), passing in the string from NEMachServiceName. To maximise security, set the .privileged flag.
Note XPC Resources has a link to a post that explains why this flag is important.
If the container app is sandboxed — necessary if you ship on the Mac App Store — then the endpoint name must be prefixed by an app group ID that’s accessible to that app, lest the App Sandbox deny the connection. See the app groups documentation for the specifics.
When implementing an XPC listener in your sysex, keep in mind that:
Your sysex’s named XPC endpoint is registered in the global namespace. Any process on the system can open a connection to it [1]. Your XPC listener must be prepared for this. If you want to restrict connections to just your container app, see XPC Resources for a link to a post that explains how to do that.
Even if you restrict access in that way, it’s still possible for multiple instances of your container app to be running simultaneously, each with its own connection to your sysex. This happens, for example, if there are multiple GUI users logged in and different users run your container app. Design your XPC protocol with this in mind.
Your sysex only gets one named XPC endpoint, and thus one XPC listener. If your sysex includes multiple NE providers, take that into account when you design your XPC protocol.
[1] Assuming that connection isn’t blocked by some other mechanism, like the App Sandbox.
Inter-provider Communication
A sysex can include multiple types of NE providers. For example, a single sysex might include a content filter and a DNS proxy provider. In that case the system instantiates all of the NE providers in the same sysex process. These instances can communicate without using IPC, for example, by storing shared state in global variables (with suitable locking, of course).
It’s also possible for a single container app to contain multiple sysexen, each including a single NE provider. In that case the system instantiates the NE providers in separate processes, one for each sysex. If these providers need to communicate, they have to use IPC.
In the appex case, the system instantiates each provider in its own process. If two providers need to communicate, they have to use IPC.
Managing Secrets
An appex runs in a user context and thus can store secrets, like VPN credentials, in the keychain. On macOS this includes both the data protection keychain and the file-based keychain. It can also use a keychain access group to share secrets with its container app. See Sharing access to keychain items among a collection of apps.
Note If you’re not familiar with the different types of keychain available on macOS, see TN3137 On Mac keychain APIs and implementations.
A sysex runs in the global context and thus doesn’t have access to user state. It also doesn’t have access to the data protection keychain. It must use the file-based keychain, and specifically the System keychain. That means there’s no good way to share secrets with the container app.
Instead, do all your keychain operations in the sysex. If the container app needs to work with a secret, have it pass that request to the sysex via IPC. For example, if the user wants to use a digital identity as a VPN credential, have the container app get the PKCS#12 data and password and then pass that to the sysex so that it can import the digital identity into the keychain.
Memory Limits
iOS imposes strict memory limits an NE provider appexen [1]. macOS imposes no memory limits on NE provider appexen or sysexen.
[1] While these limits are not documented officially, you can get a rough handle on the current limits by reading the posts in this thread.
Frameworks
If you want to share code between a Mac app and its embedded appex, use a structure like this:
MyApp.app/
Contents/
MacOS/
MyApp
PlugIns/
MyExtension.appex/
Contents/
MacOS/
MyExtension
…
Frameworks/
MyFramework.framework/
…
There’s one copy of the framework, in the app’s Frameworks directory, and both the app and the appex reference it.
This approach works for an appex because the system always loads the appex from your app’s bundle. It does not work for a sysex. When you activate a sysex, the system copies it to a protected location. If that sysex references a framework in its container app, it will fail to start because that framework isn’t copied along with the sysex.
The solution is to structure your app like this:
MyApp.app/
Contents/
MacOS/
MyApp
Library/
SystemExtensions/
MyExtension.systemextension/
Contents/
MacOS/
MyExtension
Frameworks/
MyFramework.framework/
…
…
That is, have both the app and the sysex load the framework from the sysex’s Frameworks directory. When the system copies the sysex to its protected location, it’ll also copy the framework, allowing the sysex to load it.
To make this work you have to change the default rpath configuration set up by Xcode. Read Dynamic Library Standard Setup for Apps to learn how that works and then tweak things so that:
The framework is embedded in the sysex, not the container app.
The container app has an additional LC_RPATH load command for the sysex’s Frameworks directory (@executable_path/../Library/SystemExtensions/MyExtension.systemextension/Contents/Frameworks).
The sysex’s LC_RPATH load command doesn’t reference the container app’s Frameworks directory (@executable_path/../../../../Frameworks) but instead points to the sysex’s Framweorks directory (@executable_path/../Frameworks).
Entitlements
When you build an app with an embedded NE extension, both the app and the extension must be signed with the com.apple.developer.networking.networkextension entitlement. This is a restricted entitlement, that is, it must be authorised by a provisioning profile.
The value of this entitlement is an array, and the values in that array differ depend on your distribution channel:
If you distribute your app directly with Developer ID signing, use the values with the -systemextension suffix.
Otherwise — including when you distribute the app on the App Store and when signing for development — use the values without that suffix.
Make sure you authorise these values with your provisioning profile. If, for example, you use an App Store distribution profile with a Developer ID signed app, things won’t work because the profile doesn’t authorise the right values.
In general, the easiest option is to use Xcode’s automatic code signing. However, watch out for the pitfall described in Exporting a Developer ID Network Extension.
Revision History
2025-11-06 Added the Entitlements section. Explained that, with sysex packaging, multiple instances of your container app might connect simultaneously with your sysex.
2025-09-17 First posted.