I see a lot of folks spend a lot of time trying to get Multipeer Connectivity to work for them. My experience is that the final result is often unsatisfactory. Instead, my medium-to-long term recommendation is to use Network framework instead. This post explains how you might move from Multipeer Connectivity to Network framework.
If you have questions or comments, put them in a new thread. Place it in the App & System Services > Networking topic area and tag it with Multipeer Connectivity and Network framework.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Moving from Multipeer Connectivity to Network Framework
Multipeer Connectivity has a number of drawbacks:
It has an opinionated networking model, where every participant in a session is a symmetric peer. Many apps work better with the traditional client/server model.
It offers good latency but poor throughput.
It doesn’t support flow control, aka back pressure, which severely constrains its utility for general-purpose networking.
It includes a number of UI components that are effectively obsolete.
It hasn’t evolved in recent years. For example, it relies on NSStream, which has been scheduled for deprecation as far as networking is concerned.
It always enables peer-to-peer Wi-Fi, something that’s not required for many apps and can impact the performance of the network (see Enable peer-to-peer Wi-Fi, below, for more about this).
Its security model requires the use of PKI — public key infrastructure, that is, digital identities and certificates — which are tricky to deploy in a peer-to-peer environment.
It has some gnarly bugs.
IMPORTANT Many folks use Multipeer Connectivity because they think it’s the only way to use peer-to-peer Wi-Fi. That’s not the case. Network framework has opt-in peer-to-peer Wi-Fi support. See Enable peer-to-peer Wi-Fi, below.
If Multipeer Connectivity is not working well for you, consider moving to Network framework. This post explains how to do that in 13 easy steps (-:
Plan for security
Select a network architecture
Create a peer identifier
Choose a protocol to match your send mode
Discover peers
Design for privacy
Configure your connections
Manage a listener
Manage a connection
Send and receive reliable messages
Send and receive best effort messages
Start a stream
Send a resource
Finally, at the end of the post you’ll find two appendices:
Final notes contains some general hints and tips.
Symbol cross reference maps symbols in the Multipeer Connectivity framework to sections of this post. Consult it if you’re not sure where to start with a specific Multipeer Connectivity construct.
Plan for security
The first thing you need to think about is security. Multipeer Connectivity offers three security models, expressed as choices in the MCEncryptionPreference enum:
.none for no security
.optional for optional security
.required for required security
For required security each peer must have a digital identity.
Optional security is largely pointless. It’s more complex than no security but doesn’t yield any benefits. So, in this post we’ll focus on the no security and required security models.
Your security choice affects the network protocols you can use:
QUIC is always secure.
WebSocket, TCP, and UDP can be used with and without TLS security.
QUIC security only supports PKI. TLS security supports both TLS-PKI and pre-shared key (PSK). You might find that TLS-PSK is easier to deploy in a peer-to-peer environment.
To configure the security of the QUIC protocol:
func quicParameters() -> NWParameters {
let quic = NWProtocolQUIC.Options(alpn: ["MyAPLN"])
let sec = quic.securityProtocolOptions
… configure `sec` here …
return NWParameters(quic: quic)
}
To enable TLS over TCP:
func tlsOverTCPParameters() -> NWParameters {
let tcp = NWProtocolTCP.Options()
let tls = NWProtocolTLS.Options()
let sec = tls.securityProtocolOptions
… configure `sec` here …
return NWParameters(tls: tls, tcp: tcp)
}
To enable TLS over UDP, also known as DTLS:
func dtlsOverUDPParameters() -> NWParameters {
let udp = NWProtocolUDP.Options()
let dtls = NWProtocolTLS.Options()
let sec = dtls.securityProtocolOptions
… configure `sec` here …
return NWParameters(dtls: dtls, udp: udp)
}
To configure TLS with a local digital identity and custom server trust evaluation:
func configureTLSPKI(sec: sec_protocol_options_t, identity: SecIdentity) {
let secIdentity = sec_identity_create(identity)!
sec_protocol_options_set_local_identity(sec, secIdentity)
if disableServerTrustEvaluation {
sec_protocol_options_set_verify_block(sec, { metadata, secTrust, completionHandler in
let trust = sec_trust_copy_ref(secTrust).takeRetainedValue()
… evaluate `trust` here …
completionHandler(true)
}, .main)
}
}
To configure TLS with a pre-shared key:
func configureTLSPSK(sec: sec_protocol_options_t, identity: Data, key: Data) {
let identityDD = identity.withUnsafeBytes { DispatchData(bytes: $0) }
let keyDD = identity.withUnsafeBytes { DispatchData(bytes: $0) }
sec_protocol_options_add_pre_shared_key(
sec,
keyDD as dispatch_data_t,
identityDD as dispatch_data_t
)
sec_protocol_options_append_tls_ciphersuite(
sec,
tls_ciphersuite_t(rawValue: TLS_PSK_WITH_AES_128_GCM_SHA256)!
)
}
Select a network architecture
Multipeer Connectivity uses a star network architecture. All peers are equal, and every peer is effectively connected to every peer. Many apps work better with the client/server model, where one peer acts on the server and all the others are clients. Network framework supports both models.
To implement a client/server network architecture with Network framework:
Designate one peer as the server and all the others as clients.
On the server, use NWListener to listen for incoming connections.
On each client, use NWConnection to made an outgoing connection to the server.
To implement a star network architecture with Network framework:
On each peer, start a listener.
And also start a connection to each of the other peers.
This is likely to generate a lot of redundant connections, as peer A connects to peer B and vice versa. You’ll need to a way to deduplicate those connections, which is the subject of the next section.
IMPORTANT While the star network architecture is more likely to create redundant connections, the client/server network architecture can generate redundant connections as well. The advice in the next section applies to both architectures.
Create a peer identifier
Multipeer Connectivity uses MCPeerID to uniquely identify each peer. There’s nothing particularly magic about MCPeerID; it’s effectively a wrapper around a large random number.
To identify each peer in Network framework, generate your own large random number. One good choice for a peer identifier is a locally generated UUID, created using the system UUID type.
Some Multipeer Connectivity apps persist their local MCPeerID value, taking advantage of its NSSecureCoding support. You can do the same with a UUID, using either its string representation or its Codable support.
IMPORTANT Before you decide to persist a peer identifier, think about the privacy implications. See Design for privacy below.
Avoid having multiple connections between peers; that’s both wasteful and potentially confusing. Use your peer identifier to deduplicate connections.
Deduplicating connections in a client/server network architecture is easy. Have each client check in with the server with its peer identifier. If the server already has a connection for that identifier, it can either close the old connection and keep the new connection, or vice versa.
Deduplicating connections in a star network architecture is a bit trickier. One option is to have each peer send its peer identifier to the other peer and then the peer with the ‘best’ identifier wins. For example, imagine that peer A makes an outgoing connection to peer B while peer B is simultaneously making an outgoing connection to peer A. When a peer receives a peer identifier from a connection, it checks for a duplicate. If it finds one, it compares the peer identifiers and then chooses a connection to drop based on that comparison:
if local peer identifier > remote peer identifier then
drop outgoing connection
else
drop incoming connection
end if
So, peer A drops its incoming connection and peer B drops its outgoing connection. Et voilà!
Choose a protocol to match your send mode
Multipeer Connectivity offers two send modes, expressed as choices in the MCSessionSendDataMode enum:
.reliable for reliable messages
.unreliable for best effort messages
Best effort is useful when sending latency-sensitive data, that is, data where retransmission is pointless because, by the retransmission arrives, the data will no longer be relevant. This is common in audio and video applications.
In Network framework, the send mode is set by the connection’s protocol:
A specific QUIC connection is either reliable or best effort.
WebSocket and TCP are reliable.
UDP is best effort.
Start with a reliable connection. In many cases you can stop there, because you never need a best effort connection.
If you’re not sure which reliable protocol to use, choose WebSocket. It has key advantages over other protocols:
It supports both security models: none and required. Moreover, its required security model supports both TLS-PKI and TLS PSK. In contrast, QUIC only supports the required security model, and within that model it only supports TLS-PKI.
It allows you to send messages over the connection. In contrast, TCP works in terms of bytes, meaning that you have to add your own framing.
If you need a best effort connection, get started with a reliable connection and use that connection to set up a parallel best effort connection. For example, you might have an exchange like this:
Peer A uses its reliable WebSocket connection to peer B to send a request for a parallel best effort UDP connection.
Peer B receives that, opens a UDP listener, and sends the UDP listener’s port number back to peer A.
Peer A opens its parallel UDP connection to that port on peer B.
Note For step 3, get peer B’s IP address from the currentPath property of the reliable WebSocket connection.
If you’re not sure which best effort protocol to use, use UDP. While it is possible to use QUIC in datagram mode, it has the same security complexities as QUIC in reliable mode.
Discover peers
Multipeer Connectivity has a types for advertising a peer’s session (MCAdvertiserAssistant) and a type for browsering for peer (MCNearbyServiceBrowser).
In Network framework, configure the listener to advertise its service by setting the service property of NWListener:
let listener: NWListener = …
listener.service = .init(type: "_example._tcp")
listener.serviceRegistrationUpdateHandler = { change in
switch change {
case .add(let endpoint):
… update UI for the added listener endpoint …
break
case .remove(let endpoint):
… update UI for the removed listener endpoint …
break
@unknown default:
break
}
}
listener.stateUpdateHandler = … handle state changes …
listener.newConnectionHandler = … handle the new connection …
listener.start(queue: .main)
This example also shows how to use the serviceRegistrationUpdateHandler to update your UI to reflect changes in the listener.
Note This example uses a service type of _example._tcp. See About service types, below, for more details on that.
To browse for services, use NWBrowser:
let browser = NWBrowser(for: .bonjour(type: "_example._tcp", domain: nil), using: .tcp)
browser.browseResultsChangedHandler = { latestResults, _ in
… update UI to show the latest results …
}
browser.stateUpdateHandler = … handle state changes …
browser.start(queue: .main)
This yields NWEndpoint values for each peer that it discovers. To connect to a given peer, create an NWConnection with that endpoint.
About service types
The examples in this post use _example._tcp for the service type. The first part, _example, is directly analogous to the serviceType value you supply when creating MCAdvertiserAssistant and MCNearbyServiceBrowser objects. The second part is either _tcp or _udp depending on the underlying transport protocol. For TCP and WebSocket, use _tcp. For UDP and QUIC, use _udp.
Service types are described in RFC 6335. If you deploy an app that uses a new service type, register that service type with IANA.
Discovery UI
Multipeer Connectivity also has UI components for advertising (MCNearbyServiceAdvertiser) and browsing (MCBrowserViewController). There’s no direct equivalent to this in Network framework. Instead, use your preferred UI framework to create a UI that best suits your requirements.
Note If you’re targeting Apple TV, check out the DeviceDiscoveryUI framework.
Discovery TXT records
The Bonjour service discovery protocol used by Network framework supports TXT records. Using these, a listener can associate metadata with its service and a browser can get that metadata for each discovered service.
To advertise a TXT record with your listener, include it it the service property value:
let listener: NWListener = …
let peerID: UUID = …
var txtRecord = NWTXTRecord()
txtRecord["peerID"] = peerID.uuidString
listener.service = .init(type: "_example._tcp", txtRecord: txtRecord.data)
To browse for services and their associated TXT records, use the .bonjourWithTXTRecord(…) descriptor:
let browser = NWBrowser(for: .bonjourWithTXTRecord(type: "_example._tcp", domain: nil), using: .tcp)
browser.browseResultsChangedHandler = { latestResults, _ in
for result in latestResults {
guard
case .bonjour(let txtRecord) = result.metadata,
let peerID = txtRecord["peerID"]
else { continue }
// … examine `result` and `peerID` …
_ = peerID
}
}
This example includes the peer identifier in the TXT record with the goal of reducing the number of duplicate connections, but that’s just one potential use for TXT records.
Design for privacy
This section lists some privacy topics to consider as you implement your app. Obviously this isn’t an exhaustive list. For general advice on this topic, see Protecting the User’s Privacy.
There can be no privacy without security. If you didn’t opt in to security with Multipeer Connectivity because you didn’t want to deal with PKI, consider the TLS-PSK options offered by Network framework. For more on this topic, see Plan for security.
When you advertise a service, the default behaviour is to use the user-assigned device name as the service name. To override that, create a service with a custom name:
let listener: NWListener = …
let name: String = …
listener.service = .init(name: name, type: "_example._tcp")
It’s not uncommon for folks to use the peer identifier as the service name. Whether that’s a good option depends on the user experience of your product:
Some products present a list of remote peers and have the user choose from that list. In that case it’s best to stick with the user-assigned device name, because that’s what the user will recognise.
Some products automatically connect to services as they discover them. In that case it’s fine to use the peer identifier as the service name, because the user won’t see it anyway.
If you stick with the user-assigned device name, consider advertising the peer identifier in your TXT record. See Discovery TXT records.
IMPORTANT Using a peer identifier in your service name or TXT record is a heuristic to reduce the number of duplicate connections. Don’t rely on it for correctness. Rather, deduplicate connections using the process described in Create a peer identifier.
There are good reasons to persist your peer identifier, but doing so isn’t great for privacy. Persisting the identifier allows for tracking of your service over time and between networks. Consider whether you need a persistent peer identifier at all. If you do, consider whether it makes sense to rotate it over time.
A persistent peer identifier is especially worrying if you use it as your service name or put it in your TXT record.
Configure your connections
Multipeer Connectivity’s symmetric architecture means that it uses a single type, MCSession, to manage the connections to all peers.
In Network framework, that role is fulfilled by two types:
NWListener to listen for incoming connections.
NWConnection to make outgoing connections.
Both types require you to supply an NWParameters value that specifies the network protocol and options to use. In addition, when creating an NWConnection you pass in an NWEndpoint to tell it the service to connect to. For example, here’s how to configure a very simple listener for TCP:
let parameters = NWParameters.tcp
let listener = try NWListener(using: parameters)
… continue setting up the listener …
And here’s how you might configure an outgoing TCP connection:
let parameters = NWParameters.tcp
let endpoint = NWEndpoint.hostPort(host: "example.com", port: 80)
let connection = NWConnection.init(to: endpoint, using: parameters)
… continue setting up the connection …
NWParameters has properties to control exactly what protocol to use and what options to use with those protocols.
To work with QUIC connections, use code like that shown in the quicParameters() example from the Security section earlier in this post.
To work with TCP connections, use the NWParameters.tcp property as shown above.
To enable TLS on your TCP connections, use code like that shown in the tlsOverTCPParameters() example from the Security section earlier in this post.
To work with WebSocket connections, insert it into the application protocols array:
let parameters = NWParameters.tcp
let ws = NWProtocolWebSocket.Options(.version13)
parameters.defaultProtocolStack.applicationProtocols.insert(ws, at: 0)
To enable TLS on your WebSocket connections, use code like that shown in the tlsOverTCPParameters() example to create your base parameters and then add the WebSocket application protocol to that.
To work with UDP connections, use the NWParameters.udp property:
let parameters = NWParameters.udp
To enable TLS on your UDP connections, use code like that shown in the dtlsOverUDPParameters() example from the Security section earlier in this post.
Enable peer-to-peer Wi-Fi
By default, Network framework doesn’t use peer-to-peer Wi-Fi. To enable that, set the includePeerToPeer property on the parameters used to create your listener and connection objects.
parameters.includePeerToPeer = true
IMPORTANT Enabling peer-to-peer Wi-Fi can impact the performance of the network. Only opt into it if it’s a significant benefit to your app.
If you enable peer-to-peer Wi-Fi, it’s critical to stop network operations as soon as you’re done with them. For example, if you’re browsing for services with peer-to-peer Wi-Fi enabled and the user picks a service, stop the browse operation immediately. Otherwise, the ongoing browse operation might affect the performance of your connection.
Manage a listener
In Network framework, use NWListener to listen for incoming connections:
let parameters: NWParameters = .tcp
… configure parameters …
let listener = try NWListener(using: parameters)
listener.service = … service details …
listener.serviceRegistrationUpdateHandler = … handle service registration changes …
listener.stateUpdateHandler = { newState in
… handle state changes …
}
listener.newConnectionHandler = { newConnection in
… handle the new connection …
}
listener.start(queue: .main)
For details on how to set up parameters, see Configure your connections. For details on how to set up up service and serviceRegistrationUpdateHandler, see Discover peers.
Network framework calls your state update handler when the listener changes state:
let listener: NWListener = …
listener.stateUpdateHandler = { newState in
switch newState {
case .setup:
// The listener has not yet started.
…
case .waiting(let error):
// The listener tried to start and failed. It might recover in the
// future.
…
case .ready:
// The listener is running.
…
case .failed(let error):
// The listener tried to start and failed irrecoverably.
…
case .cancelled:
// The listener was cancelled by you.
…
@unknown default:
break
}
}
Network framework calls your new connection handler when a client connects to it:
var connections: [NWConnection] = []
let listener: NWListener = listener
listener.newConnectionHandler = { newConnection in
… configure the new connection …
newConnection.start(queue: .main)
connections.append(newConnection)
}
IMPORTANT Don’t forget to call start(queue:) on your connections.
In Multipeer Connectivity, the session (MCSession) keeps track of all the peers you’re communicating with. With Network framework, that responsibility falls on you. This example uses a simple connections array for that purpose. In your app you may or may not need a more complex data structure. For example:
In the client/server network architecture, the client only needs to manage the connections to a single peer, the server.
On the other hand, the server must managed the connections to all client peers.
In the star network architecture, every peer must maintain a listener and connections to each of the other peers.
Understand UDP flows
Network framework handles UDP using the same NWListener and NWConnection types as it uses for TCP. However, the underlying UDP protocol is not implemented in terms of listeners and connections. To resolve this, Network framework works in terms of UDP flows. A UDP flow is defined as a bidirectional sequence of UDP datagrams with the same 4 tuple (local IP address, local port, remote IP address, and remote port). In Network framework:
Each NWConnection object manages a single UDP flow.
If an NWListener receives a UDP datagram whose 4 tuple doesn’t match any known NWConnection, it creates a new NWConnection.
Manage a connection
In Network framework, use NWConnection to start an outgoing connection:
var connections: [NWConnection] = []
let parameters: NWParameters = …
let endpoint: NWEndpoint = …
let connection = NWConnection(to: endpoint, using: parameters)
connection.stateUpdateHandler = … handle state changes …
connection.viabilityUpdateHandler = … handle viability changes …
connection.pathUpdateHandler = … handle path changes …
connection.betterPathUpdateHandler = … handle better path notifications …
connection.start(queue: .main)
connections.append(connection)
As in the listener case, you’re responsible for keeping track of this connection.
Each connection supports four different handlers. Of these, the state and viability update handlers are the most important. For information about the path update and better path handlers, see the NWConnection documentation.
Network framework calls your state update handler when the connection changes state:
let connection: NWConnection = …
connection.stateUpdateHandler = { newState in
switch newState {
case .setup:
// The connection has not yet started.
…
case .preparing:
// The connection is starting.
…
case .waiting(let error):
// The connection tried to start and failed. It might recover in the
// future.
…
case .ready:
// The connection is running.
…
case .failed(let error):
// The connection tried to start and failed irrecoverably.
…
case .cancelled:
// The connection was cancelled by you.
…
@unknown default:
break
}
}
If you a connection is in the .waiting(_:) state and you want to force an immediate retry, call the restart() method.
Network framework calls your viability update handler when its viability changes:
let connection: NWConnection = …
connection.viabilityUpdateHandler = { isViable in
… react to viability changes …
}
A connection becomes inviable when a network resource that it depends on is unavailable. A good example of this is the network interface that the connection is running over. If you have a connection running over Wi-Fi, and the user turns off Wi-Fi or moves out of range of their Wi-Fi network, any connection running over Wi-Fi becomes inviable.
The inviable state is not necessarily permanent. To continue the above example, the user might re-enable Wi-Fi or move back into range of their Wi-Fi network. If the connection becomes viable again, Network framework calls your viability update handler with a true value.
It’s a good idea to debounce the viability handler. If the connection becomes inviable, don’t close it down immediately. Rather, wait for a short while to see if it becomes viable again.
If a connection has been inviable for a while, you get to choose as to how to respond. For example, you might close the connection down or inform the user.
To close a connection, call the cancel() method. This gracefully disconnects the underlying network connection. To close a connection immediately, call the forceCancel() method. This is not something you should do as a matter of course, but it does make sense in exceptional circumstances. For example, if you’ve determined that the remote peer has gone deaf, it makes sense to cancel it in this way.
Send and receive reliable messages
In Multipeer Connectivity, a single session supports both reliable and best effort send modes. In Network framework, a connection is either reliable or best effort, depending on the underlying network protocol.
The exact mechanism for sending a message depends on the underlying network protocol. A good protocol for reliable messages is WebSocket. To send a message on a WebSocket connection:
let connection: NWConnection = …
let message: Data = …
let metadata = NWProtocolWebSocket.Metadata(opcode: .binary)
let context = NWConnection.ContentContext(identifier: "send", metadata: [metadata])
connection.send(content: message, contentContext: context, completion: .contentProcessed({ error in
// … check `error` …
_ = error
}))
In WebSocket, the content identifier is ignored. Using an arbitrary fixed value, like the send in this example, is just fine.
Multipeer Connectivity allows you to send a message to multiple peers in a single send call. In Network framework each send call targets a specific connection. To send a message to multiple peers, make a send call on the connection associated with each peer.
If your app needs to transfer arbitrary amounts of data on a connection, it must implement flow control. See Start a stream, below.
To receive messages on a WebSocket connection:
func startWebSocketReceive(on connection: NWConnection) {
connection.receiveMessage { message, _, _, error in
if let error {
… handle the error …
return
}
if let message {
… handle the incoming message …
}
startWebSocketReceive(on: connection)
}
}
IMPORTANT WebSocket preserves message boundaries, which is one of the reasons why it’s ideal for your reliable messaging connections. If you use a streaming protocol, like TCP or QUIC streams, you must do your own framing. A good way to do that is with NWProtocolFramer.
If you need the metadata associated with the message, get it from the context parameter:
connection.receiveMessage { message, context, _, error in
…
if let message,
let metadata = context?.protocolMetadata(definition: NWProtocolWebSocket.definition) as? NWProtocolWebSocket.Metadata
{
… handle the incoming message and its metadata …
}
…
}
Send and receive best effort messages
In Multipeer Connectivity, a single session supports both reliable and best effort send modes. In Network framework, a connection is either reliable or best effort, depending on the underlying network protocol.
The exact mechanism for sending a message depends on the underlying network protocol. A good protocol for best effort messages is UDP. To send a message on a UDP connection:
let connection: NWConnection = …
let message: Data = …
connection.send(content: message, completion: .idempotent)
IMPORTANT UDP datagrams have a theoretical maximum size of just under 64 KiB. However, sending a large datagram results in IP fragmentation, which is very inefficient. For this reason, Network framework prevents you from sending UDP datagrams that will be fragmented. To find the maximum supported datagram size for a connection, gets its maximumDatagramSize property.
To receive messages on a UDP connection:
func startUDPReceive(on connection: NWConnection) {
connection.receiveMessage { message, _, _, error in
if let error {
… handle the error …
return
}
if let message {
… handle the incoming message …
}
startUDPReceive(on: connection)
}
}
This is exactly the same code as you’d use for WebSocket.
Start a stream
In Multipeer Connectivity, you can ask the session to start a stream to a specific peer. There are two ways to achieve this in Network framework:
If you’re using QUIC for your reliable connection, start a new QUIC stream over that connection. This is one place that QUIC shines. You can run an arbitrary number of QUIC connections over a single QUIC connection group, and QUIC manages flow control (see below) for each connection and for the group as a whole.
If you’re using some other protocol for your reliable connection, like WebSocket, you must start a new connection. You might use TCP for this new connection, but it’s not unreasonable to use WebSocket or QUIC.
If you need to open a new connection for your stream, you can manage that process over your reliable connection. Choose a protocol to match your send mode explains the general approach for this, although in that case it’s opening a parallel best effort UDP connection rather than a parallel stream connection.
The main reason to start a new stream is that you want to send a lot of data to the remote peer. In that case you need to worry about flow control. Flow control applies to both the send and receive side.
IMPORTANT Failing to implement flow control can result in unbounded memory growth in your app. This is particularly bad on iOS, where jetsam will terminate your app if it uses too much memory.
On the send side, implement flow control by waiting for the connection to call your completion handler before generating and sending more data. For example, on a TCP connection or QUIC stream you might have code like this:
func sendNextChunk(on connection: NWConnection) {
let chunk: Data = … read next chunk from disk …
connection.send(content: chunk, completion: .contentProcessed({ error in
if let error {
… handle error …
return
}
sendNextChunk(on: connection)
}))
}
This acts like an asynchronous loop. The first send call completes immediately because the connection just copies the data to its send buffer. In response, your app generates more data. This continues until the connection’s send buffer fills up, at which point it defers calling your completion handler. Eventually, the connection moves enough data across the network to free up space in its send buffer, and calls your completion handler. Your app generates another chunk of data
For best performance, use a chunk size of at least 64 KiB. If you’re expecting to run on a fast device with a fast network, a chunk size of 1 MiB is reasonable.
Receive-side flow control is a natural extension of the standard receive pattern. For example, on a TCP connection or QUIC stream you might have code like this:
func receiveNextChunk(on connection: NWConnection) {
let chunkSize = 64 * 1024
connection.receive(minimumIncompleteLength: chunkSize, maximumLength: chunkSize) { chunk, _, isComplete, error in
if let chunk {
… write chunk to disk …
}
if isComplete {
… close the file …
return
}
if let error {
… handle the error …
return
}
receiveNextChunk(on: connection)
}
}
IMPORTANT The above is cast in terms of writing the chunk to disk. That’s important, because it prevents unbounded memory growth. If, for example, you accumulated the chunks into an in-memory buffer, that buffer could grow without bound, which risks jetsam terminating your app.
The above assumes that you can read and write chunks of data synchronously and promptly, for example, reading and writing a file on a local disk. That’s not always the case. For example, you might be writing data to an accessory over a slow interface, like Bluetooth LE. In such cases you need to read and write each chunk asynchronously.
This results in a structure where you read from an asynchronous input and write to an asynchronous output. For an example of how you might approach this, albeit in a very different context, see Handling Flow Copying.
Send a resource
In Multipeer Connectivity, you can ask the session to send a complete resource, identified by either a file or HTTP URL, to a specific peer. Network framework has no equivalent support for this, but you can implement it on top of a stream:
To send, open a stream and then read chunks of data using URLSession and send them over that stream.
To receive, open a stream and then receive chunks of data from that stream and write those chunks to disk.
In this situation it’s critical to implement flow control, as described in the previous section.
Final notes
This section collects together some general hints and tips.
Concurrency
In Multipeer Connectivity, each MCSession has its own internal queue and calls delegate callbacks on that queue. In Network framework, you get to control the queue used by each object for its callbacks. A good pattern is to have a single serial queue for all networking, including your listener and all connections.
In a simple app it’s reasonable to use the main queue for networking. If you do this, be careful not to do CPU intensive work in your networking callbacks. For example, if you receive a message that holds JPEG data, don’t decode that data on the main queue.
Overriding protocol defaults
Many network protocols, most notably TCP and QUIC, are intended to be deployed at vast scale across the wider Internet. For that reason they use default options that aren’t optimised for local networking. Consider changing these defaults in your app.
TCP has the concept of a send timeout. If you send data on a TCP connection and TCP is unable to successfully transfer it to the remote peer within the send timeout, TCP will fail the connection.
The default send timeout is infinite. TCP just keeps trying. To change this, set the connectionDropTime property.
TCP has the concept of keepalives. If a connection is idle, TCP will send traffic on the connection for two reasons:
If the connection is running through a NAT, the keepalives prevent the NAT mapping from timing out.
If the remote peer is inaccessible, the keepalives fail, which in turn causes the connection to fail. This prevents idle but dead connections from lingering indefinitely.
TCP keepalives default to disabled. To enable and configure them, set the enableKeepalive property. To configure their behaviour, set the keepaliveIdle, keepaliveCount, and keepaliveInterval properties.
Symbol cross reference
If you’re not sure where to start with a specific Multipeer Connectivity construct, find it in the tables below and follow the link to the relevant section.
[Sorry for the poor formatting here. DevForums doesn’t support tables properly, so I’ve included the tables as preformatted text.]
| For symbol | See |
| ----------------------------------- | --------------------------- |
| `MCAdvertiserAssistant` | *Discover peers* |
| `MCAdvertiserAssistantDelegate` | *Discover peers* |
| `MCBrowserViewController` | *Discover peers* |
| `MCBrowserViewControllerDelegate` | *Discover peers* |
| `MCNearbyServiceAdvertiser` | *Discover peers* |
| `MCNearbyServiceAdvertiserDelegate` | *Discover peers* |
| `MCNearbyServiceBrowser` | *Discover peers* |
| `MCNearbyServiceBrowserDelegate` | *Discover peers* |
| `MCPeerID` | *Create a peer identifier* |
| `MCSession` | See below. |
| `MCSessionDelegate` | See below. |
Within MCSession:
| For symbol | See |
| --------------------------------------------------------- | ------------------------------------ |
| `cancelConnectPeer(_:)` | *Manage a connection* |
| `connectedPeers` | *Manage a listener* |
| `connectPeer(_:withNearbyConnectionData:)` | *Manage a connection* |
| `disconnect()` | *Manage a connection* |
| `encryptionPreference` | *Plan for security* |
| `myPeerID` | *Create a peer identifier* |
| `nearbyConnectionData(forPeer:withCompletionHandler:)` | *Discover peers* |
| `securityIdentity` | *Plan for security* |
| `send(_:toPeers:with:)` | *Send and receive reliable messages* |
| `sendResource(at:withName:toPeer:withCompletionHandler:)` | *Send a resource* |
| `startStream(withName:toPeer:)` | *Start a stream* |
Within MCSessionDelegate:
| For symbol | See |
| ---------------------------------------------------------------------- | ------------------------------------ |
| `session(_:didFinishReceivingResourceWithName:fromPeer:at:withError:)` | *Send a resource* |
| `session(_:didReceive:fromPeer:)` | *Send and receive reliable messages* |
| `session(_:didReceive:withName:fromPeer:)` | *Start a stream* |
| `session(_:didReceiveCertificate:fromPeer:certificateHandler:)` | *Plan for security* |
| `session(_:didStartReceivingResourceWithName:fromPeer:with:)` | *Send a resource* |
| `session(_:peer:didChange:)` | *Manage a connection* |
Revision History
2025-04-11 Added some advice as to whether to use the peer identifier in your service name. Expanded the discussion of how to deduplicate connections in a star network architecture.
2025-03-20 Added a link to the DeviceDiscoveryUI framework to the Discovery UI section. Made other minor editorial changes.
2025-03-11 Expanded the Enable peer-to-peer Wi-Fi section to stress the importance of stopping network operations once you’re done with them. Added a link to that section from the list of Multipeer Connectivity drawbacks.
2025-03-07 First posted.
Networking
RSS for tagExplore the networking protocols and technologies used by the device to connect to Wi-Fi networks, Bluetooth devices, and cellular data services.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
HI,
I am currently developing an app that utilizes Wi-Fi Aware.
According to the Wi-Fi Aware framework examples and the WWDC25 session on Wi-Fi Aware, discovery is handled using DevicePairingView and DevicePicker from the DeviceDiscoveryUI module.
However, these SwiftUI views present their connection UI modally when tapped. My app's design requires the ability to control the presentation of this UI programmatically, rather than relying on a user tap.
While inspecting the DeviceDiscoveryUI module, I found DDDevicePairingViewController and DDDevicePickerViewController, which appear to be the UIViewController counterparts to the SwiftUI views.
The initializer for DDDevicePairingViewController accepts a ListenerProvider, so it seems I can pass the same ListenerProvider instance that is used with the DevicePairingView.
However, the initializer for DDDevicePickerViewController requires an NWBrowser.Descriptor, which seems incompatible with the parameters used for the SwiftUI DevicePicker.
I have two main questions:
(1) Can DDDevicePairingViewController and DDDevicePickerViewController be officially used for Wi-Fi Aware pairing?
(2) Are there any plans to provide more customization or programmatic control over the DevicePairingView and DevicePicker (for example, allowing us to trigger their modal presentation programmatically)?
Thank you.
Topic:
App & System Services
SubTopic:
Networking
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Broadcasts and Multicasts, Hints and Tips
I regularly see folks struggle with broadcasts and multicasts on Apple platforms. This post is my attempt to clear up some of the confusion.
This post covers both IPv4 and IPv6. There is, however, a key difference. In IPv4, broadcasts and multicasts are distinct concepts. In contrast, IPv6 doesn’t support broadcast as such; rather, it treats broadcasts as a special case of multicasts. IPv6 does have an all nodes multicast address, but it’s rarely used.
Before reading this post, I suggest you familiarise yourself with IP addresses in general. A good place to start is The Fount of All Knowledge™.
Service Discovery
A lot of broadcast and multicast questions come from folks implementing their own service discovery protocol. I generally recommend against doing that, for the reasons outlined in the Service Discovery section of Don’t Try to Get the Device’s IP Address.
There are, however, some good reasons to implement a custom service discovery protocol. For example, you might be working with an accessory that only supports this custom protocol [1]. If you must implement your own service discovery protocol, read this post and also read the advice in Don’t Try to Get the Device’s IP Address.
IMPORTANT Sometimes I see folks implementing their own version of mDNS. This is almost always a mistake:
If you’re using third-party tooling that includes its own mDNS implementation, it’s likely that this tooling allows you to disable that implementation and instead rely on the Bonjour support that’s built-in to all Apple platforms.
If you’re doing some weird low-level thing with mDNS or DNS-SD, it’s likely that you can do that with the low-level DNS-SD API.
[1] And whose firmware you can’t change! I talk more about this in Working with a Wi-Fi Accessory.
API Choice
Broadcasts and multicasts typically use UDP [1]. TN3151 Choosing the right networking API describes two recommended UDP APIs:
Network framework
BSD Sockets
Our general advice is to prefer Network framework over BSD Sockets, but UDP broadcasts and multicasts are an exception to that rule. Network framework has very limited UDP broadcast support. And while it’s support for UDP multicasts is less limited, it’s still not sufficient for all UDP applications. In cases where Network framework is not sufficient, BSD Sockets is your only option.
[1] It is possible to broadcast and multicast at the Ethernet level, but I almost never see questions about that.
UDP Broadcasts in Network Framework
Historically I’ve claimed that Network framework was useful for UDP broadcasts is very limited circumstances (for example, in the footnote on this post). I’ve since learnt that this isn’t the case. Or, more accurately, this support is so limited (r. 122924701) as to be useless in practice.
For the moment, if you want to work with UDP broadcasts, your only option is BSD Sockets.
UDP Multicasts in Network Framework
Network framework supports UDP multicast using the NWConnectionGroup class with the NWMulticastGroup group descriptor. This support has limits. The most significant limit is that it doesn’t support broadcasts; it’s for multicasts only.
Note This only relevant to IPv4. Remember that IPv6 doesn’t support broadcasts as a separate concept.
There are other limitations, but I don’t have a good feel for them. I’ll update this post as I encounter issues.
Local Network Privacy
Some Apple platforms support local network privacy. This impacts broadcasts and multicasts in two ways:
Broadcasts and multicasts require local network access, something that’s typically granted by the user.
Broadcasts and multicasts are limited by a managed entitlement (except on macOS).
TN3179 Understanding local network privacy has lots of additional info on this topic, including the list of platforms to which it applies.
Send, Receive, and Interfaces
When you broadcast or multicast, there’s a fundamental asymmetry between send and receive:
You can reasonable receive datagrams on all broadcast-capable interfaces.
But when you send a datagram, it has to target a specific interface.
The sending behaviour is the source of many weird problems. Consider the IPv4 case. If you send a directed broadcast, you can reasonably assume it’ll be routed to the correct interface based on the network prefix. But folks commonly send an all-hosts broadcast (255.255.255.255), and it’s not obvious what happens in that case.
Note If you’re unfamiliar with the terms directed broadcast and all-hosts broadcast, see IP address.
The exact rules for this are complex, vary by platform, and can change over time. For that reason, it’s best to write your broadcast code to be interface specific. That is:
Identify the interfaces on which you want to work.
Create a socket per interface.
Bind that socket to that interface.
Note Use the IP_BOUND_IF (IPv4) or IPV6_BOUND_IF (IPv6) socket options rather than binding to the interface address, because the interface address can change over time.
Extra-ordinary Networking has links to other posts which discuss these concepts and the specific APIs in more detail.
Miscellaneous Gotchas
A common cause of mysterious broadcast and multicast problems is folks who hard code BSD interface names, like en0. Doing that might work for the vast majority of users but then fail in some obscure scenarios.
BSD interface names are not considered API and you must not hard code them. Extra-ordinary Networking has links to posts that describe how to enumerate the interface list and identify interfaces of a specific type.
Don’t assume that there’ll be only one interface of a given type. This might seem obviously true, but it’s not. For example, our platforms support peer-to-peer Wi-Fi, so each device has multiple Wi-Fi interfaces.
When sending a broadcast, don’t forget to enable the SO_BROADCAST socket option.
If you’re building a sandboxed app on the Mac, working with UDP requires both the com.apple.security.network.client and com.apple.security.network.server entitlements.
Some folks reach for broadcasts or multicasts because they’re sending the same content to multiple devices and they believe that it’ll be faster than unicasts. That’s not true in many cases, especially on Wi-Fi. For more on this, see the Broadcasts section of Wi-Fi Fundamentals.
Snippets
To send a UDP broadcast:
func broadcast(message: Data, to interfaceName: String) throws {
let fd = try FileDescriptor.socket(AF_INET, SOCK_DGRAM, 0)
defer { try! fd.close() }
try fd.setSocketOption(SOL_SOCKET, SO_BROADCAST, 1 as CInt)
let interfaceIndex = if_nametoindex(interfaceName)
guard interfaceIndex > 0 else { throw … }
try fd.setSocketOption(IPPROTO_IP, IP_BOUND_IF, interfaceIndex)
try fd.send(data: message, to: ("255.255.255.255", 2222))
}
Note These snippet uses the helpers from Calling BSD Sockets from Swift.
To receive UDP broadcasts:
func receiveBroadcasts(from interfaceName: String) throws {
let fd = try FileDescriptor.socket(AF_INET, SOCK_DGRAM, 0)
defer { try! fd.close() }
let interfaceIndex = if_nametoindex(interfaceName)
guard interfaceIndex > 0 else { fatalError() }
try fd.setSocketOption(IPPROTO_IP, IP_BOUND_IF, interfaceIndex)
try fd.setSocketOption(SOL_SOCKET, SO_REUSEADDR, 1 as CInt)
try fd.setSocketOption(SOL_SOCKET, SO_REUSEPORT, 1 as CInt)
try fd.bind("0.0.0.0", 2222)
while true {
let (data, (sender, port)) = try fd.receiveFrom()
…
}
}
IMPORTANT This code runs synchronously, which is less than ideal. In a real app you’d run the receive asynchronously, for example, using a Dispatch read source. For an example of how to do that, see this post.
If you need similar snippets for multicast, lemme know. I’ve got them lurking on my hard disk somewhere (-:
Other Resources
Apple’s official documentation for BSD Sockets is in the man pages. See Reading UNIX Manual Pages. Of particular interest are:
setsockopt man page
ip man page
ip6 man page
If you’re not familiar with BSD Sockets, I strongly recommend that you consult third-party documentation for it. BSD Sockets is one of those APIs that looks simple but, in reality, is ridiculously complicated. That’s especially true if you’re trying to write code that works on BSD-based platforms, like all of Apple’s platforms, and non-BSD-based platforms, like Linux.
I specifically recommend UNIX Network Programming, by Stevens et al, but there are lots of good alternatives.
https://unpbook.com
Revision History
2025-09-01 Fixed a broken link.
2025-01-16 First posted.
Are the network relays introduced in 2023 and
https://developer.apple.com/videos/play/wwdc2023/10002/
the same thing as the Private Relay introduced in 2021?
https://developer.apple.com/videos/play/wwdc2021/10096/
We are considering verifying the relay function, but we are not sure whether they are the same function or different functions.
https://developer.apple.com/documentation/devicemanagement/relay?language=objc
Topic:
App & System Services
SubTopic:
Networking
The path from Network Extension’s in-provider networking APIs to Network framework has been long and somewhat rocky. The most common cause of confusion is NWEndpoint, where the same name can refer to two completely different types. I’ve helped a bunch of folks with this over the years, and I’ve decided to create this post to collect together all of those titbits.
If you have questions or comments, please put them in a new thread. Put it in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
NWEndpoint History and Advice
A tale that spans three APIs, two languages, and ten years.
The NWEndpoint type has a long and complex history, and if you’re not aware of that history you can bump into weird problems. The goal of this post is to explain the history and then offer advice on how to get around specific problems.
IMPORTANT This post focuses on NWEndpoint, because that’s the type that causes the most problems, but there’s a similar situation with NWPath.
The History
In iOS 9 Apple introduced the Network Extension (NE) framework, which offers a convenient way for developers to create a custom VPN transport. Network Extension types all have the NE prefix.
Note I’m gonna use iOS versions here, just to keep the text simple. If you’re targeting some other platform, use this handy conversion table:
iOS | macOS | tvOS | watchOS | visionOS
--- + ----- + ---- + ------- + --------
9 | 10.11 | 9 | 2 | -
12 | 10.14 | 12 | 5 | -
18 | 15 | 18 | 11 | 2
At that time we also introduced in-provider networking APIs. The idea was that an NE provider could uses these Objective-C APIs to communicate with its VPN server, and thereby avoiding a bunch of ugly BSD Sockets code.
The in-provider networking APIs were limited to NE providers. Specifically, the APIs to construct an in-provider connection were placed on types that were only usable within an NE provider. For example, a packet tunnel provider could create a NWTCPConnection object by calling -createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] and -createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate:, which are both methods on NEPacketTunnelProvider.
These in-provider networking APIs came with a number of ancillary types, including NWEndpoint and NWPath.
At the time we thought that we might promote these in-provider networking APIs to general-purpose networking APIs. That’s why the APIs use the NW prefix. For example, it’s NWTCPConnection, not NETCPConnection.
However, plans changed. In iOS 12 Apple shipped Network framework as our recommended general-purpose networking API. This actually includes two APIs:
A Swift API that follows Swift conventions, for example, the connection type is called NWConnection
A C API that follows C conventions, for example, the connection type is called nw_connection_t
These APIs follow similar design patterns to the in-provider networking API, and thus have similar ancillary types. Specifically, there are an NWEndpoint and nw_endpoint_t types, both of which perform a similar role to the NWEndpoint type in the in-provider networking API.
This was a source of some confusion in Swift, because the name NWEndpoint could refer to either the Network framework type or the Network Extension framework type, depending on what you’d included. Fortunately you could get around this by qualifying the type as either Network.NWEndpoint or NetworkExtension.NWEndpoint.
The arrival of Network framework meant that it no longer made sense to promote the in-provider networking APIs to general-purposes networking APIs. The in-provider networking APIs were on the path to deprecation.
However, deprecating these APIs was actually quite tricky. Network Extension framework uses these APIs in a number of interesting ways, and so deprecating them required adding replacements. In addition, we’d needed different replacements for Swift and Objective-C, because Network framework has separate APIs for Swift and C-based languages.
In iOS 18 we tackled that problem head on. To continue the NWTCPConnection example above, we replaced:
-createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] with nw_connection_t
-createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate: with nw_connection_t combined with a new virtualInterface property on NEPacketTunnelProvider
Of course that’s the Objective-C side of things. In Swift, the replacement is NWConnection rather than nw_connection_t, and the type of the virtualInterface property is NWInterface rather than nw_interface_t.
But that’s not the full story. For the two types that use the same name in both frameworks, NWEndpoint and NWPath, we decided to use this opportunity to sort out that confusion. To see how we did that, check out the <NetworkExtension/NetworkExtension.apinotes> file in the SDK. Focusing on NWEndpoint for the moment, you’ll find two entries:
…
- Name: NWEndpoint
SwiftPrivate: true
…
SwiftVersions:
- Version: 5.0
…
- Name: NWEndpoint
SwiftPrivate: false
…
The first entry applies when you’re building with the Swift 6 language mode. This marks the type as SwiftPrivate, which means that Swift imports it as __NWEndpoint. That frees up the NWEndpoint name to refer exclusively to the Network framework type.
The second entry applies when you’re building with the Swift 5 language mode. It marks the type as not SwiftPrivate. This is a compatible measure to ensure that code written for Swift 5 continues to build.
The Advice
This sections discusses specific cases in this transition.
NWEndpoint and NWPath
In Swift 5 language mode, NWEndpoint and NWPath might refer to either framework, depending on what you’ve imported. Add a qualifier if there’s any ambiguity, for example, Network.NWEndpoint or NetworkExtension.NWEndpoint.
In Swift 6 language mode, NWEndpoint and NWPath always refer to the Network framework type. Add a __ prefix to get to the Network Extension type. For example, use NWEndpoint for the Network framework type and __NWEndpoint for the Network Extension type.
Direct and Through-Tunnel TCP Connections in Swift
To create a connection directly, simply create an NWConnection. This support both TCP and UDP, with or without TLS.
To create a connection through the tunnel, replace code like this:
let c = self.createTCPConnectionThroughTunnel(…)
with code like this:
let params = NWParameters.tcp
params.requiredInterface = self.virtualInterface
let c = NWConnection(to: …, using: params)
This is for TCP but the same basic process applies to UDP.
UDP and App Proxies in Swift
If you’re building an app proxy, transparent proxy, or DNS proxy in Swift and need to handle UDP flows using the new API, adopt the NEAppProxyUDPFlowHandling protocol. So, replace code like this:
class AppProxyProvider: NEAppProxyProvider {
…
override func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteEndpoint remoteEndpoint: NWEndpoint) -> Bool {
…
}
}
with this:
class AppProxyProvider: NEAppProxyProvider, NEAppProxyUDPFlowHandling {
…
func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteFlowEndpoint remoteEndpoint: NWEndpoint) -> Bool {
…
}
}
Creating a Network Rule
To create an NWHostEndpoint, replace code like this:
let ep = NWHostEndpoint(hostname: "1.2.3.4", port: "12345")
let r = NENetworkRule(destinationHost: ep, protocol: .TCP)
with this:
let ep = NWEndpoint.hostPort(host: "1.2.3.4", port: 12345)
let r = NENetworkRule(destinationHostEndpoint: ep, protocol: .TCP)
Note how the first label of the initialiser has changed from destinationHost to destinationHostEndpoint.
Most apps perform ordinary network operations, like fetching an HTTP resource with URLSession and opening a TCP connection to a mail server with Network framework. These operations are not without their challenges, but they’re the well-trodden path.
If your app performs ordinary networking, see TN3151 Choosing the right networking API for recommendations as to where to start.
Some apps have extra-ordinary networking requirements. For example, apps that:
Help the user configure a Wi-Fi accessory
Require a connection to run over a specific interface
Listen for incoming connections
Building such an app is tricky because:
Networking is hard in general.
Apple devices support very dynamic networking, and your app has to work well in whatever environment it’s running in.
Documentation for the APIs you need is tucked away in man pages and doc comments.
In many cases you have to assemble these APIs in creative ways.
If you’re developing an app with extra-ordinary networking requirements, this post is for you.
Note If you have questions or comments about any of the topics discussed here, put them in a new thread here on DevForums. Make sure I see it by putting it in the App & System Services > Networking area. And feel free to add tags appropriate to the specific technology you’re using, like Foundation, CFNetwork, Network, or Network Extension.
Links, Links, and More Links
Each topic is covered in a separate post:
The iOS Wi-Fi Lifecycle describes how iOS joins and leaves Wi-Fi networks. Understanding this is especially important if you’re building an app that works with a Wi-Fi accessory.
Network Interface Concepts explains how Apple platforms manage network interfaces. If you’ve got this far, you definitely want to read this.
Network Interface Techniques offers a high-level overview of some of the more common techniques you need when working with network interfaces.
Network Interface APIs describes APIs and core techniques for working with network interfaces. It’s referenced by many other posts.
Running an HTTP Request over WWAN explains why most apps should not force an HTTP request to run over WWAN, what they should do instead, and what to do if you really need that behaviour.
If you’re building an iOS app with an embedded network server, see Showing Connection Information in an iOS Server for details on how to get the information to show to your user so they can connect to your server.
Many folks run into trouble when they try to find the device’s IP address, or other seemingly simple things, like the name of the Wi-Fi interface. Don’t Try to Get the Device’s IP Address explains why these problems are hard, and offers alternative approaches that function correctly in all network environments.
Similarly, folks also run into trouble when trying to get the host name. On Host Names explains why that’s more complex than you might think.
If you’re working with broadcasts or multicasts, see Broadcasts and Multicasts, Hints and Tips.
If you’re building an app that works with a Wi-Fi accessory, see Working with a Wi-Fi Accessory.
If you’re trying to gather network interface statistics, see Network Interface Statistics.
There are also some posts that are not part of this series but likely to be of interest if you’re working in this space:
TN3179 Understanding local network privacy discusses the local network privacy feature.
Calling BSD Sockets from Swift does what it says on the tin, that is, explains how to call BSD Sockets from Swift. When doing weird things with the network, you often find yourself having to use BSD Sockets, and that API is not easy to call from Swift. The code therein is primarily for the benefit of test projects, oh, and DevForums posts like these.
TN3111 iOS Wi-Fi API overview is a critical resource if you’re doing Wi-Fi specific stuff on iOS.
TLS For Accessory Developers tackles the tricky topic of how to communicate securely with a network-based accessory.
A Peek Behind the NECP Curtain discusses NECP, a subsystem that control which programs have access to which network interfaces.
Networking Resources has links to many other useful resources.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Revision History
2025-07-31 Added a link to A Peek Behind the NECP Curtain.
2025-03-28 Added a link to On Host Names.
2025-01-16 Added a link to Broadcasts and Multicasts, Hints and Tips. Updated the local network privacy link to point to TN3179. Made other minor editorial changes.
2024-04-30 Added a link to Network Interface Statistics.
2023-09-14 Added a link to TLS For Accessory Developers.
2023-07-23 First posted.
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Working with a Wi-Fi Accessory
Building an app that works with a Wi-Fi accessory presents specific challenges. This post discusses those challenges and some recommendations for how to address them.
Note While my focus here is iOS, much of the info in this post applies to all Apple platforms.
IMPORTANT iOS 18 introduced AccessorySetupKit, a framework to simplify the discovery and configuration of an accessory. I’m not fully up to speed on that framework myself, but I encourage you to watch WWDC 2024 Session 10203 Meet AccessorySetupKit and read the framework documentation.
IMPORTANT iOS 26 introduced WiFiAware, a framework for setting up communication with Wi-Fi Aware accessories. Wi-Fi Aware is an industry standard to securely discover, pair, and communicate with nearby devices. This is especially useful for stand-alone accessories (defined below). For more on this framework, watch WWDC 2025 Session 228 Supercharge device connectivity with Wi-Fi Aware and read the framework documentation. For information on how to create a Wi-Fi Aware accessory that works with iPhone, go to Developer > Accessories, download Accessory Design Guidelines for Apple Devices, and review the Wi-Fi Aware chapter.
Accessory Categories
I classify Wi-Fi accessories into three different categories.
A bound accessory is ultimately intended to join the user’s Wi-Fi network. It may publish its own Wi-Fi network during the setup process, but the goal of that process is to get the accessory on to the existing network. Once that’s done, your app interacts with the accessory using ordinary networking APIs.
An example of a bound accessory is a Wi-Fi capable printer.
A stand-alone accessory publishes a Wi-Fi network at all times. An iOS device joins that network so that your app can interact with it. The accessory never provides access to the wider Internet.
An example of a stand-alone accessory is a video camera that users take with them into the field. You might want to write an app that joins the camera’s network and downloads footage from it.
A gateway accessory is one that publishes a Wi-Fi network that provides access to the wider Internet. Your app might need to interact with the accessory during the setup process, but after that it’s useful as is.
An example of this is a Wi-Fi to WWAN gateway.
Not all accessories fall neatly into these categories. Indeed, some accessories might fit into multiple categories, or transition between categories. Still, I’ve found these categories to be helpful when discussing various accessory integration challenges.
Do You Control the Firmware?
The key question here is Do you control the accessory’s firmware? If so, you have a bunch of extra options that will make your life easier. If not, you have to adapt to whatever the accessory’s current firmware does.
Simple Improvements
If you do control the firmware, I strongly encourage you to:
Support IPv6
Implement Bonjour [1]
These two things are quite easy to do — most embedded platforms support them directly, so it’s just a question of turning them on — and they will make your life significantly easier:
Link-local addresses are intrinsic to IPv6, and IPv6 is intrinsic to Apple platforms. If your accessory supports IPv6, you’ll always be able to communicate with it, regardless of how messed up the IPv4 configuration gets.
Similarly, if you support Bonjour, you’ll always be able to find your accessory on the network.
[1] Bonjour is an Apple term for three Internet standards:
RFC 3927 Dynamic Configuration of IPv4 Link-Local Addresses
RFC 6762 Multicast DNS
RFC 6763 DNS-Based Service Discovery
WAC
For a bound accessory, support Wireless Accessory Configuration (WAC). This is a relatively big ask — supporting WAC requires you to join the MFi Program — but it has some huge benefits:
You don’t need to write an app to configure your accessory. The user will be able to do it directly from Settings.
If you do write an app, you can use the EAWiFiUnconfiguredAccessoryBrowser class to simplify your configuration process.
HomeKit
For a bound accessory that works in the user’s home, consider supporting HomeKit. This yields the same onboarding benefits as WAC, and many other benefits as well. Also, you can get started with the HomeKit Open Source Accessory Development Kit (ADK).
Bluetooth LE
If your accessory supports Bluetooth LE, think about how you can use that to improve your app’s user experience. For an example of that, see SSID Scanning, below.
Claiming the Default Route, Or Not?
If your accessory publishes a Wi-Fi network, a key design decision is whether to stand up enough infrastructure for an iOS device to make it the default route.
IMPORTANT To learn more about how iOS makes the decision to switch the default route, see The iOS Wi-Fi Lifecycle and Network Interface Concepts.
This decision has significant implications. If the accessory’s network becomes the default route, most network connections from iOS will be routed to your accessory. If it doesn’t provide a path to the wider Internet, those connections will fail. That includes connections made by your own app.
Note It’s possible to get around this by forcing your network connections to run over WWAN. See Binding to an Interface in Network Interface Techniques and Running an HTTP Request over WWAN. Of course, this only works if the user has WWAN. It won’t help most iPad users, for example.
OTOH, if your accessory’s network doesn’t become the default route, you’ll see other issues. iOS will not auto-join such a network so, if the user locks their device, they’ll have to manually join the network again.
In my experience a lot of accessories choose to become the default route in situations where they shouldn’t. For example, a bound accessory is never going to be able to provide a path to the wider Internet so it probably shouldn’t become the default route. However, there are cases where it absolutely makes sense, the most obvious being that of a gateway accessory.
Acting as a Captive Network, or Not?
If your accessory becomes the default route you must then decide whether to act like a captive network or not.
IMPORTANT To learn more about how iOS determines whether a network is captive, see The iOS Wi-Fi Lifecycle.
For bound and stand-alone accessories, becoming a captive network is generally a bad idea. When the user joins your network, the captive network UI comes up and they have to successfully complete it to stay on the network. If they cancel out, iOS will leave the network. That makes it hard for the user to run your app while their iOS device is on your accessory’s network.
In contrast, it’s more reasonable for a gateway accessory to act as a captive network.
SSID Scanning
Many developers think that TN3111 iOS Wi-Fi API overview is lying when it says:
iOS does not have a general-purpose API for Wi-Fi scanning
It is not.
Many developers think that the Hotspot Helper API is a panacea that will fix all their Wi-Fi accessory integration issues, if only they could get the entitlement to use it.
It will not.
Note this comment in the official docs:
NEHotspotHelper is only useful for hotspot integration. There are both technical and business restrictions that prevent it from being used for other tasks, such as accessory integration or Wi-Fi based location.
Even if you had the entitlement you would run into these technical restrictions. The API was specifically designed to support hotspot navigation — in this context hotspots are “Wi-Fi networks where the user must interact with the network to gain access to the wider Internet” — and it does not give you access to on-demand real-time Wi-Fi scan results.
Many developers look at another developer’s app, see that it’s displaying real-time Wi-Fi scan results, and think there’s some special deal with Apple that’ll make that work.
There is not.
In reality, Wi-Fi accessory developers have come up with a variety of creative approaches for this, including:
If you have a bound accessory, you might add WAC support, which makes this whole issue go away.
In many cases, you can avoid the need for Wi-Fi scan results by adopting AccessorySetupKit.
You might build your accessory with a barcode containing the info required to join its network, and scan that from your app. This is the premise behind the Configuring a Wi-Fi Accessory to Join the User’s Network sample code.
You might configure all your accessories to have a common SSID prefix, and then take advantage of the prefix support in NEHotspotConfigurationManager. See Programmatically Joining a Network, below.
You might have your app talk to your accessory via some other means, like Bluetooth LE, and have the accessory scan for Wi-Fi networks and return the results.
Programmatically Joining a Network
Network Extension framework has an API, NEHotspotConfigurationManager, to programmatically join a network, either temporarily or as a known network that supports auto-join. For the details, see Wi-Fi Configuration.
One feature that’s particularly useful is it’s prefix support, allowing you to create a configuration that’ll join any network with a specific prefix. See the init(ssidPrefix:) initialiser for the details.
For examples of how to use this API, see:
Configuring a Wi-Fi Accessory to Join the User’s Network — It shows all the steps for one approach for getting a non-WAC bound accessory on to the user’s network.
NEHotspotConfiguration Sample — Use this to explore the API in general.
Secure Communication
Users expect all network communication to be done securely. For some ideas on how to set up a secure connection to an accessory, see TLS For Accessory Developers.
Revision History
2025-11-05 Added a link to the Accessory Design Guidelines for Apple Devices.
2025-06-19 Added a preliminary discussion of Wi-Fi Aware.
2024-09-12 Improved the discussion of AccessorySetupKit.
2024-07-16 Added a preliminary discussion of AccessorySetupKit.
2023-10-11 Added the HomeKit section. Fixed the link in Secure Communication to point to TLS For Accessory Developers.
2023-07-23 First posted.
Hello,
How long does it usually take for a URL Filter request to be reviewed?
It's been 2.5 weeks since we submitted the request form but we haven't received any feedback yet.
Just in case, the request ID is D3633USVZZ
Hey there
Are there any recommendations or guidance for apps on alternatives to certificate pinning to secure their device network traffic?
I want to move away from the overhead and risk associated with rotating certificates when using leaf pinning.
However, I also don't want people to be able to perform a MITM attack easily using something like Charles Proxy with a self‑signed certificate added to the trust store.
My understanding is that an app cannot distinguish between user‑trusted certificates and system‑trusted certificates in the trust store, so it cannot block traffic that uses user‑trusted certificates.
Topic:
App & System Services
SubTopic:
Networking
ios構成プロファイルの制限のallowCloudPrivateRelayのプライベートリレーの制御とRelayペイロードの機能は関係がありますか?
それとも別々の機能でしょうか?
↓
s there a relationship between the private relay control in the iOS configuration profile restriction allowCloudPrivateRelay and the functionality of the Relay payload?
Or are they separate features?
Topic:
App & System Services
SubTopic:
Networking
Questions about FTP crop up from time-to-time here on DevForums. In most cases I write a general “don’t use FTP” response, but I don’t have time to go into all the details. I’ve created this post as a place to collect all of those details, so I can reference them in other threads.
IMPORTANT Apple’s official position on FTP is:
All our FTP APIs have been deprecated, and you should avoid using deprecated APIs.
Apple has been slowly removing FTP support from the user-facing parts of our system. The most recent example of this is that we removed the ftp command-line tool in macOS 10.13.
You should avoid the FTP protocol and look to adopt more modern alternatives.
The rest of this post is an informational explanation of the overall FTP picture.
This post is locked so I can keep it focused. If you have questions or comments, please do create a new thread in the App & System Services > Networking subtopic and I’ll respond there.
Don’t Use FTP
FTP is a very old and very crufty protocol. Certain things that seem obvious to us now — like being able to create a GUI client that reliably shows a directory listing in a platform-independent manner — aren’t possible to do in FTP. However, by far the biggest problem with FTP is that it provides no security [1]. Specifically, the FTP protocol:
Provides no on-the-wire privacy, so anyone can see the data you transfer
Provides no client-authenticates-server authentication, so you have no idea whether you’re talking to the right server
Provides no data integrity, allowing an attacker to munge your data in transit
Transfers user names and passwords in the clear
Using FTP for anonymous downloads may be acceptable (see the explanation below) but most other uses of FTP are completely inappropriate for the modern Internet.
IMPORTANT You should only use FTP for anonymous downloads if you have an independent way to check the integrity of the data you’ve downloaded. For example, if you’re downloading a software update, you could use code signing to check its integrity. If you don’t check the integrity of the data you’ve downloaded, an attacker could substitute a malicious download instead. This would be especially bad in, say, the software update case.
These fundamental problems with the FTP protocol mean that it’s not a priority for Apple. This is reflected in the available APIs, which is the subject of the next section.
FTP APIs
Apple provides two FTP APIs:
All Apple platforms provide FTP downloads via URLSession.
Most Apple platforms (everything except watchOS) support CFFTPStream, which allows for directory listings, downloads, uploads, and directory creation.
All of these FTP APIs are now deprecated:
URLSession was deprecated for the purposes of FTP in the 2022 SDKs (macOS 13, iOS 16, iPadOS 16, tvOS 16, watchOS 9) [2].
CFFTPStream was deprecated in the 2016 SDKs (macOS 10.11, iOS 9, iPadOS 9, tvOS 9).
CFFTPStream still works about as well as it ever did, which is not particularly well. Specifically:
There is at least one known crashing bug (r. 35745763), albeit one that occurs quite infrequently.
There are clear implementation limitations — like the fact that CFFTPCreateParsedResourceListing assumes a MacRoman text encoding (r. 7420589) — that won’t be fixed.
If you’re looking for an example of how to use these APIs, check out SimpleFTPSample.
Note This sample hasn’t been updated since 2013 and is unlikely to ever be updated given Apple’s position on FTP.
The FTP support in URLSession has significant limitations:
It only supports FTP downloads; there’s no support for uploads or any other FTP operations.
It doesn’t support resumable FTP downloads [3].
It doesn’t work in background sessions. That prevents it from running FTP downloads in the background on iOS.
It’s only supported in classic loading mode. See the usesClassicLoadingMode property and the doc comments in <Foundation/NSURLSession.h>.
If Apple’s FTP APIs are insufficient for your needs, you’ll need to write or acquire your own FTP library. Before you do that, however, consider switching to an alternative protocol. After all, if you’re going to go to the trouble of importing a large FTP library into your code base, you might as well import a library for a better protocol. The next section discusses some options in this space.
Alternative Protocols
There are numerous better alternatives to FTP:
HTTPS is by far the best alternative to FTP, offering good security, good APIs on Apple platforms, good server support, and good network compatibility. Implementing traditional FTP operations over HTTPS can be a bit tricky. One possible way forward is to enable DAV extensions on the server.
FTPS is FTP over TLS (aka SSL). While FTPS adds security to the protocol, which is very important, it still inherits many of FTP’s other problems. Personally I try to avoid this protocol.
SFTP is a file transfer protocol that’s completely unrelated to FTP. It runs over SSH, making it a great alternative in many of the ad hoc setups that traditionally use FTP.
Apple doesn’t have an API for either FTPS or SFTP, although on macOS you may be able to make some headway by invoking the sftp command-line tool.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
[1] In another thread someone asked me about FTP’s other problems, those not related to security, so let’s talk about that.
One of FTP’s implicit design goals was to provide cross-platform support that exposes the target platform. You can think of FTP as being kinda like telnet. When you telnet from Unix to VMS, it doesn’t aim to abstract away VMS commands, so that you can type Unix commands at the VMS prompt. Rather, you’re expected to run VMS commands. FTP is (a bit) like that.
This choice made sense back when the FTP protocol was invented. Folks were expecting to use FTP via a command-line client, so there was a human in the loop. If they ran a command and it produced VMS-like output, that was fine because they knew that they were FTPing into a VMS machine.
However, most users today are using GUI clients, and this design choice makes it very hard to create a general GUI client for FTP. Let’s consider the simple problem of getting the contents of a directory. When you send an FTP LIST command, the server would historically run the platform native directory list command and pipe the results back to you. To create a GUI client you have to parse that data to extract the file names. Doing that is a serious challenge. Indeed, just the first step, working out the text encoding, is a challenge. Many FTP servers use UTF-8, but some use ISO-Latin-1, some use other standard encodings, some use Windows code pages, and so on.
I say “historically” above because there have been various efforts to standardise this stuff, both in the RFCs and in individual server implementations. However, if you’re building a general client you can’t rely on these efforts. After all, the reason why folks continue to use FTP is because of it widespread support.
[2] To quote the macOS 13 Ventura Release Notes:
FTP is deprecated for URLSession and related APIs. Please adopt
modern secure networking protocols such as HTTPS. (92623659)
[3] Although you can implement resumable downloads using the lower-level CFFTPStream API, courtesy of the kCFStreamPropertyFTPFileTransferOffset property.
Revision History
2025-10-06 Explained that URLSession only supports FTP in classic loading mode. Made other minor editorial changes.
2024-04-15 Added a footnote about FTP’s other problems. Made other minor editorial changes.
2022-08-09 Noted that the FTP support in URLSession is now deprecated. Made other minor editorial changes.
2021-04-06 Fixed the formatting. Fixed some links.
2018-02-23 First posted.
General:
Forums subtopic: App & System Services > Networking
DevForums tag: Network Extension
Network Extension framework documentation
Routing your VPN network traffic article
Filtering traffic by URL sample code
Filtering Network Traffic sample code
TN3120 Expected use cases for Network Extension packet tunnel providers technote
TN3134 Network Extension provider deployment technote
TN3165 Packet Filter is not API technote
Network Extension and VPN Glossary forums post
Debugging a Network Extension Provider forums post
Exporting a Developer ID Network Extension forums post
Network Extension Framework Entitlements forums post
Network Extension vs ad hoc techniques on macOS forums post
Network Extension Provider Packaging forums post
NWEndpoint History and Advice forums post
Extra-ordinary Networking forums post
Wi-Fi management:
Wi-Fi Fundamentals forums post
TN3111 iOS Wi-Fi API overview technote
How to modernize your captive network developer news post
iOS Network Signal Strength forums post
See also Networking Resources.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
IMPORTANT The resume rate limiter is now covered by the official documentation. See Use background sessions efficiently within Downloading files in the background. So, the following is here purely for historical perspective.
NSURLSession’s background session support on iOS includes a resume rate limiter. This limiter exists to prevent apps from abusing the background session support in order to run continuously in the background. It works as follows:
nsurlsessiond (the daemon that does all the background session work) maintains a delay value for your app.
It doubles that delay every time it resumes (or relaunches) your app.
It resets that delay to 0 when the user brings your app to the front.
It also resets the delay to 0 if the delay period elapses without it having resumed your app.
When your app creates a new task while it is in the background, the task does not start until that delay has expired.
To understand the impact of this, consider what happens when you download 10 resources. If you pass them to the background session all at once, you see something like this:
Your app creates tasks 1 through 10 in the background session.
nsurlsessiond starts working on the first few tasks.
As tasks complete, nsurlsessiond starts working on subsequent ones.
Eventually all the tasks complete and nsurlsessiond resumes your app.
Now consider what happens if you only schedule one task at a time:
Your app creates task 1.
nsurlsessiond starts working on it.
When it completes, nsurlsessiond resumes your app.
Your app creates task 2.
nsurlsessiond delays the start of task 2 a little bit.
nsurlsessiond starts working on task 2.
When it completes, nsurlsessiond resumes your app.
Your app creates task 3.
nsurlsessiond delays the start of task 3 by double the previous amount.
nsurlsessiond starts working on task 3.
When it completes, nsurlsessiond resumes your app.
Steps 8 through 11 repeat, and each time the delay doubles. Eventually the delay gets so large that it looks like your app has stopped making progress.
If you have a lot of tasks to run then you can mitigate this problem by starting tasks in batches. That is, rather than start just one task in step 1, you would start 100. This only helps up to a point. If you have thousands of tasks to run, you will eventually start seeing serious delays. In that case it’s much better to change your design to use fewer, larger transfers.
Note All of the above applies to iOS 8 and later. Things worked differently in iOS 7. There’s a post on DevForums that explains the older approach.
Finally, keep in mind that there may be other reasons for your task not starting. Specifically, if the task is flagged as discretionary (because you set the discretionary flag when creating the task’s session or because the task was started while your app was in the background), the task may be delayed for other reasons (low power, lack of Wi-Fi, and so on).
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
(r. 22323366)
I'm using NERelayManager to set Relay configuration which all works perfectly fine.
I then do a curl with the included domain and while I see QUIC connection succeeds with relay server and H3 request goes to the server, the connection gets abruptly closed by the client with "Software caused connection abort".
Console has this information:
default 09:43:04.459517-0700 curl nw_flow_connected [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] Transport protocol connected (quic)
default 09:43:04.459901-0700 curl [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] event: flow:finish_transport @0.131s
default 09:43:04.460745-0700 curl nw_flow_connected [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] Joined protocol connected (http3)
default 09:43:04.461049-0700 curl [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] event: flow:finish_transport @0.133s
default 09:43:04.465115-0700 curl [C2 E47A3A0C-7275-4F6B-AEDF-59077ABAE34B 192.168.4.197:4433 quic, multipath service: 1, tls, definite, attribution: developer] cancel
default 09:43:04.465238-0700 curl [C2 E47A3A0C-7275-4F6B-AEDF-59077ABAE34B 192.168.4.197:4433 quic, multipath service: 1, tls, definite, attribution: developer] cancelled
[C2 FCB1CFD1-4BF9-4E37-810E-81265D141087 192.168.4.139:53898<->192.168.4.197:4433]
Connected Path: satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi
Duration: 0.121s, QUIC @0.000s took 0.000s, TLS 1.3 took 0.111s
bytes in/out: 2880/4322, packets in/out: 4/8, rtt: 0.074s, retransmitted bytes: 0, out-of-order bytes: 0
ecn packets sent/acked/marked/lost: 3/1/0/0
default 09:43:04.465975-0700 curl nw_flow_disconnected [C2 192.168.4.197:4433 cancelled multipath-socket-flow ((null))] Output protocol disconnected
default 09:43:04.469189-0700 curl nw_endpoint_proxy_receive_report [C1.1 IPv4#124bdc4d:80 in_progress proxy (satisfied (Path is satisfied), interface: en0[802.11], ipv4, ipv6, dns, proxy, uses wifi)] Privacy proxy failed with error 53 ([C1.1.1] masque Proxy: http://192.168.4.197:4433)
default 09:43:04.469289-0700 curl [C1.1.1 192.168.4.197:4433 failed socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] event: flow:failed_connect @0.141s, error Software caused connection abort
Relay server otherwise works fine with our QUIC MASQUE clients but not with built-in macOS MASQUE client. Anything I'm missing?
Hello,
I understand that to discover and pair a device or accessory with Wi-Fi Aware, we can use either the DeviceDiscoveryUI or AccessorySetupKitUI frameworks. During the pairing process, both frameworks prompt the user to enter a pairing code. Is this step mandatory?
What alternatives exist for devices or accessories that don't have a way to communicate a pairing code to the user (for example, devices or accessories without a display or voice capability)?
Best regards,
Gishan
Topic:
App & System Services
SubTopic:
Networking
Tags:
iOS
Network
DeviceDiscoveryUI
AccessorySetupKit
My external device can generate a fixed Wi-Fi network. When I connect to this Wi-Fi using my iPhone 17 Pro Max (iOS version 26.0.1), and my app tries to establish a connection using the following method, this method returns -1
int connect(int, const struct sockaddr *, socklen_t) __DARWIN_ALIAS_C(connect);
However, when I use other phones, such as iPhone 12, iPhone 8, iPhone 11, etc., to connect to this external device, the above method always returns successfully, with the parameters passed to the method remaining the same.
I also tried resetting the network settings on the iPhone 17 Pro Max (iOS version 26.0.1), but it still cannot establish a connection.
Topic:
App & System Services
SubTopic:
Networking
Hi,
We're receiving data via centralManager.centralManager.scanForPeripherals, with no options or filtering (for now), and in the func centralManager(_ central: CBCentralManager, didDiscover peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI: NSNumber) callback, we get advertisementData for each bluetooth device found.
But, I know one of my BLE devices is sending an Eddystone TLM payload, which generally is received into the kCBAdvDataServiceData part of the advertisementData dictionary, but, it doesn't show up.
What is happening however (when comparing to other devices that do show that payload), is I've noticed the "isConnectable" part is false, and others have it true. Technically we're not "connecting" as such as we're simply reading passive advertisement data, but does that have any bearing on how CoreBluetooth decides to build up it's AdvertisementData response?
Example (with serviceData; and I know this has Eddystone TLM)
["kCBAdvDataLocalName": FSC-BP105N, "kCBAdvDataRxPrimaryPHY": 1, "kCBAdvDataServiceUUIDs": <__NSArrayM 0x300b71f80>(
FEAA,
FEF5
)
, "kCBAdvDataTimestamp": 773270526.26279, "kCBAdvDataServiceData": {
FFF0 = {length = 11, bytes = 0x36021892dc0d3015aeb164};
FEAA = {length = 14, bytes = 0x20000be680000339ffa229bbce8a};
}, "kCBAdvDataRxSecondaryPHY": 0, "kCBAdvDataIsConnectable": 1]
Vs
This also has Eddystone TLM configured
["kCBAdvDataLocalName": 100FA9FD-7000-1000, "kCBAdvDataIsConnectable": 0, "kCBAdvDataRxPrimaryPHY": 1, "kCBAdvDataRxSecondaryPHY": 0, "kCBAdvDataTimestamp": 773270918.97273]
Any insight would be great to understand if the presence of other flags drive the exposure of ServiceData or not...
This is probably a basic question but I wanted to ask your advice for the best way to take consenting users' Watch data from Apple Health Kit and send it to our central server? One idea we had was to create an iOS app that gets the data from Apple's Health SDK on the phone and sends it to our server. Would appreciate any help here, thank you.
Macbook OS Version: macOS 14.7.3 (23H417)
Mobile OS: iOS
Mobile OS Version: iOS 18.6.2
Mobile Manufacturer: Apple
Mobile Model: iPhone 12 Pro Max
Page Type: vue
vue Version: vue2
Packaging Method: Cloud Packaging
Project Creation Method: HBuilderX
Steps:
The backend server is deployed on AWS in Japan with a Japanese IP.
Packaging the APP in HBuilderX and publishing it to the Apple App Store were both successful.
In a subsequent version, we planned to add a push notification feature and selected uniPush V2.
Due to the separation of frontend and backend, the frontend APP implements functions such as registration, login, password change, page content display, and product lists through the server's RESTful APIs.
Test colleagues reported that the APP could not load pages when used in Japan; however, it worked normally in China.
In China:
Pinging the server IP and domain from a MacBook was successful.
Testing the API with Postman on a MacBook was successful.
In Japan:
Pinging the server IP and domain from a MacBook was successful.
Testing the API with Postman on a MacBook failed with the error:
HandshakeException: Connection terminated during handshake
This appears to be an SSL communication failure.
We tested the SSL certificate using www.ssllabs.com/ssltest and received an A+ rating. The certificate should not be an issue.
we deselected uniPush V2, repackaged the APP, and uploaded it to TestFlight.
The result remained the same: the APP content failed to load in Japan, while it worked normally in China.
Expected Result:
Access to the Japanese server APIs should work normally both in China and Japan.
Actual Result:
The APP content fails to load when used in Japan, but works normally in China.
Hi,
I built a system that can detect and block Short Form Videos like Instagram Reels and Youtube Shorts. It works by connecting the iphone to a VPN and then do statistics on network packets (no decryption).
I was wondering the feasibility of porting this to run on device.
Functionality wise I would need: packet interception, packet drop, DNS query interception.
I saw that Content filter providers could be something to look into, but then I read an article of how you would have to have a managed device which is not ideal for the end user.
New to apple development, the lack of snippets and code examples is confusing.