Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

iOS 18 new RecognizedTextRequest DEADLOCKS if more than 2 are run in parallel
Following WWDC24 video "Discover Swift enhancements in the Vision framework" recommendations (cfr video at 10'41"), I used the following code to perform multiple new iOS 18 `RecognizedTextRequest' in parallel. Problem: if more than 2 request are run in parallel, the request will hang, leaving the app in a state where no more requests can be started. -> deadlock I tried other ways to run the requests, but no matter the method employed, or what device I use: no more than 2 requests can ever be run in parallel. func triggerDeadlock() {} try await withThrowingTaskGroup(of: Void.self) { group in // See: WWDC 2024 Discover Siwft enhancements in the Vision framework at 10:41 // ############## THIS IS KEY let maxOCRTasks = 5 // On a real-device, if more than 2 RecognizeTextRequest are launched in parallel using tasks, the request hangs // ############## THIS IS KEY for idx in 0..<maxOCRTasks { let url = ... // URL to some image group.addTask { // Perform OCR let _ = await performOCRRequest(on: url: url) } } var nextIndex = maxOCRTasks for try await _ in group { // Wait for the result of the next child task that finished if nextIndex < pageCount { group.addTask { let url = ... // URL to some image // Perform OCR let _ = await performOCRRequest(on: url: url) } nextIndex += 1 } } } } // MARK: - ASYNC/AWAIT version with iOS 18 @available(iOS 18, *) func performOCRRequest(on url: URL) async throws -> [RecognizedText] { // Create request var request = RecognizeTextRequest() // Single request: no need for ImageRequestHandler // Configure request request.recognitionLevel = .accurate request.automaticallyDetectsLanguage = true request.usesLanguageCorrection = true request.minimumTextHeightFraction = 0.016 // Perform request let textObservations: [RecognizedTextObservation] = try await request.perform(on: url) // Convert [RecognizedTextObservation] to [RecognizedText] return textObservations.compactMap { observation in observation.topCandidates(1).first } } I also found this Swift forums post mentioning something very similar. I also opened a feedback: FB17240843
7
0
241
Aug ’25
Issue with #Playground and Foundation Model
Hi all, I’m encountering an issue when trying to run Apple Foundation Models in a blank project targeting iOS 26. Below are the details: Xcode: Latest version with iOS 26 SDK macOS: macOS 26 Tahoe (installed on main disk) Mac: 16” MacBook Pro with M2 Pro chip Apple Intelligence: Available and functional on this machine Problem: I created a new blank iOS project, set the deployment target to iOS 26, and ran the following minimal code using Foundation Models. However, I get no response at all in the output - not even an error. The app runs, but the model does not produce any output. #Playground { let session = LanguageModelSession() let response = try await session.respond(to: "Tell me a story") } Then, I tried to catch an error with this code: #Playground { let session = LanguageModelSession() do { let response = try await session.respond(to: "Tell me a story") print(response) } catch { print("Failed to get response:", error) } print("This line, never gets executed") } And got these results: I’ve done further testing and discovered something important: I tried running the Code Along sample project, and there the #Playground macro worked without issues. The only significant difference I noticed was the Canvas run destination: In my original project, I was using iPhone 16 Pro (iOS 26) as the run target in Canvas. Apple Intelligence was enabled on the simulator, but no response was returned when executing the prompt. In the sample project, the Canvas was running on My Mac. I attempted to match that setup, but at first, my destination was My Mac (Designed for iPad), which still didn’t work. The macro finally executed properly once I switched to My Mac (AppKit). So the question is ... it seems that for now, Foundation Models and the #Playground macro only run correctly when the canvas or destination is set to “My Mac (AppKit)”?
7
0
488
Jul ’25
GenerationError -1 / 1026
Hi, I was using Foundation Models in my app, and suddenly it just stopped working from one moment to the next. To double-check, I created a small test in Playgrounds, but I’m getting the exact same error there too. #Playground { let session = LanguageModelSession() let prompt = "please answer a word" do { let response = try await session.respond(to: prompt) } catch { print("error is \(error)") } } error is Error Domain=FoundationModels.LanguageModelSession.GenerationError Code=-1 "(null)" UserInfo={NSMultipleUnderlyingErrorsKey=( "Error Domain=ModelManagerServices.ModelManagerError Code=1026 \"(null)\" UserInfo={NSMultipleUnderlyingErrorsKey=(\n)}" )} I’m no longer able to get any response from the framework anywhere, even in a fresh project. It's been 5 days. Has anyone else experienced this issue or knows what could be causing it? Thanks in advance! Tahoe 26.2 beta 1, Xcode 26.1.1, iPhone Air simulator 26.1
6
1
520
4w
Regression in EnumeratedShaped support in recent MacOS release
Hi, unfortunately I am not able to verify this but I remember some time ago I was able to create CoreML models that had one (or more) inputs with an enumerated shape size, and one (or more) inputs with a static shape. This was some months ago. Since then I updated my MacOS to Sequoia 15.5, and when I try to execute MLModels with this setup I get the following error libc++abi: terminating due to uncaught exception of type CoreML::MLNeuralNetworkUtilities::AsymmetricalEnumeratedShapesException: A model doesn't allow input features with enumerated flexibility to have unequal number of enumerated shapes, but input feature global_write_indices has 1 enumerated shapes and input feature input_hidden_states has 3 enumerated shapes. It may make sense (but not really though) to verify that for inputs with a flexible enumerated shape they all have the same number of possible shapes is the same, but this should not impede the possibility of also having static shape inputs with a single shape defined alongside the flexible shape inputs.
6
1
194
May ’25
The yolo11 object detection model I exported to coreml stopped working in macOS15.2 beta.
After updating to macOS15.2beta, the Yolo11 object detection model exported to coreml outputs incorrect and abnormal bounding boxes. It also doesn't work in iOS apps built on a 15.2 mac. The same model worked fine on macOS14.1. When training a Yolo11 custom model in Python, exporting it to coreml, and testing it in the preview tab of mlpackage on macOS15.2 and Xcode16.0, the above result is obtained.
6
1
1.4k
Feb ’25
Create ML Trouble Loading CSV to Train Word Tagger With Commas in Training Data
I'm using Numbers to build a spreadsheet that I'm exporting as a CSV. I then import this file into Create ML to train a word tagger model. Everything has been working fine for all the models I've trained so far, but now I'm coming across a use case that has been breaking the import process: commas within the training data. This is a case that none of Apple's examples show. My project takes Navajo text that has been tokenized by syllables and labels the parts-of-speech. Case that works... Raw text: Naaltsoos yídéeshtah. Tokens column: Naal,tsoos, ,yí,déesh,tah,. Labels column: NObj,NObj,Space,Verb,Verb,VStem,Punct Case that breaks... Raw text: óola, béésh łigaii, tłʼoh naadą́ą́ʼ, wáin, akʼah, dóó á,shįįh Tokens column with tokenized text (commas quoted): óo,la,",", ,béésh, ,łi,gaii,",", ,tłʼoh, ,naa,dą́ą́ʼ,",", ,wáin,",", ,a,kʼah,",", ,dóó, ,á,shįįh (Create ML reports mismatched columns) Tokens column with tokenized text (commas escaped): óo,la,\,, ,béésh, ,łi,gaii,\,, ,tłʼoh, ,naa,dą́ą́ʼ,\,, ,wáin,\,, ,a,kʼah,\,, ,dóó, ,á,shįįh (Create ML reports mismatched columns) Tokens column with tokenized text (commas escape-quoted): óo,la,\",\", ,béésh, ,łi,gaii,\",\", ,tłʼoh, ,naa,dą́ą́ʼ,\",\", ,wáin,\",\", ,a,kʼah,\",\", ,dóó, ,á,shįįh (record not detected by Create ML) Tokens column with tokenized text (commas escape-quoted): óo,la,"","", ,béésh, ,łi,gaii,"","", ,tłʼoh, ,naa,dą́ą́ʼ,"","", ,wáin,"","", ,a,kʼah,"","", ,dóó, ,á,shįįh (Create ML reports mismatched columns) Labels column: NSub,NSub,Punct,Space,NSub,Space,NSub,NSub,Punct,Space,NSub,Space,NSub,NSub,Punct,Space,NSub,Punct,Space,NSub,NSub,Punct,Space,Conj,Space,NSub,NSub Sample From Spreadsheet Solution Needed It's simple enough to escape commas within CSV files, but the format needed by Create ML essentially combines entire CSV records into single columns, so I'm ending up needing a CSV record that contains a mixture of commas to use for parsing and ones to use as character literals. That's where this gets complicated. For this particular use case (which seems like it would frequently arise when training a word tagger model), how should I properly escape a comma literal?
6
0
798
Jan ’25
Proposal: Develop a Token Estimation Tool for Foundation Models
Dear Apple Foundation Models Development Team, I am a developer integrating Apple Foundation Models (AFM) into my app and encountered the exceededContextWindowSize error when exceeding the 4096-token limit. Proposal: I suggest Apple develop a tool to estimate the token count of a prompt before sending it to the model. This tool could be integrated into FoundationModels Framework for ease of use. Benefits: A token estimation tool would help developers manage the context window limit and optimize performance. I hope Apple considers this proposal soon. Thank you!
6
0
346
Aug ’25
tensorflow-metal fails with tensorflow > 2.18.1
Also submitted as feedback (ID: FB20612561). Tensorflow-metal fails on tensorflow versions above 2.18.1, but works fine on tensorflow 2.18.1 In a new python 3.12 virtual environment: pip install tensorflow pip install tensor flow-metal python -c "import tensorflow as tf" Prints error: Traceback (most recent call last): File "", line 1, in File "/Users//pt/venv/lib/python3.12/site-packages/tensorflow/init.py", line 438, in _ll.load_library(_plugin_dir) File "/Users//pt/venv/lib/python3.12/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library py_tf.TF_LoadLibrary(lib) tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users//pt/venv/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Library not loaded: @rpath/_pywrap_tensorflow_internal.so Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users//pt/venv/lib/python3.12/site-packages/tensorflow-plugins/libmetal_plugin.dylib Reason: tried: '/Users//pt/venv/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/Users//pt/venv/lib/python3.12/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file), '/System/Volumes/Preboot/Cryptexes/OS/opt/homebrew/lib/_pywrap_tensorflow_internal.so' (no such file)
6
4
1.9k
2w
CoreML 6 beta 2 - Failed to create CVPixelBufferPool
Hello everyone, I am trying to train using CreateML Version 6.0 Beta (146.1), feature extractor Image Feature Print v2. I am using 100K images for a total ~4GB on my M3 Max 48GB (MacOs 15.0 Beta (24A5279h)) The images seems to be correctly read and visualized in the Data Source section (no images with corrupted data seems to be there). When I start the training it's all fine for the first 6k ~ 7k pictures, then I receive the following error: Failed to create CVPixelBufferPool. Width = 0, Height = 0, Format = 0x00000000 It is the first time I am using it, so I don't really have so much of experience. Could you help me to understand what could be the problem? Thanks a lot
6
1
1.2k
Dec ’24
Xcode AI Coding Assistance Option(s)
Not finding a lot on the Swift Assist technology announced at WWDC 2024. Does anyone know the latest status? Also, currently I use OpenAI's macOS app and its 'Work With...' functionality to assist with Xcode development, and this is okay, certainly saves copying code back and forth, but it seems like AI should be able to do a lot more to help with Xcode app development. I guess I'm looking at what people are doing with AI in Visual Studio, Cline, Cursor and other IDEs and tools like those and feel a bit left out working in Xcode. Please let me know if there are AI tools or techniques out there you use to help with your Xcode projects. Thanks in advance!
6
0
11k
Mar ’25
Training adapter, it won't call my tool
Hi all. My adapter model just won't invoke my tool. The problem I am having is covered in an older post: https://developer.apple.com/forums/thread/794839?answerId=852262022#852262022 Sadly the thread dies there and no resolution is seen in that thread. It's worth noting that I have developed an AI chatbot built around LanguageModelSession to which I feed the exact same system prompt that I feed to my training set (pasted further in this post). The AI chatbot works perfectly, the tool is invoked when needed. I am training the adapter model because the base model whilst capable doesn't produce the quality I'm looking for. So here's the template of an item in my training set: [ { 'role': 'system', 'content': systemPrompt, 'tools': [TOOL_DEFINITION] }, { 'role': 'user', 'content': entry['prompt'] }, { 'role': 'assistant', 'content': entry['code'] } ] where TOOL_DEFINITION = { 'type': 'function', 'function': { 'name': 'WriteUbersichtWidgetToFileSystem', 'description': 'Writes an Übersicht Widget to the file system. Call this tool as the last step in processing a prompt that generates a widget.', 'parameters': { 'type': 'object', 'properties': { 'jsxContent': { 'type': 'string', 'description': 'Complete JSX code for an Übersicht widget. This should include all required exports: command, refreshFrequency, render, and className. The JSX should be a complete, valid Übersicht widget file.' } }, 'required': ['jsxContent'] } } ... and systemPrompt = A conversation between a user and a helpful assistant. You are an Übersicht widget designer. Create Übersicht widgets when requested by the user. IMPORTANT: You have access to a tool called WriteUbersichtWidgetToFileSystem. When asked to create a widget, you MUST call this tool. ### Tool Usage: Call WriteUbersichtWidgetToFileSystem with complete JSX code that implements the Übersicht Widget API. Generate custom JSX based on the user's specific request - do not copy the example below. ### Übersicht Widget API (REQUIRED): Every Übersicht widget MUST export these 4 items: - export const command: The bash command to execute (string) - export const refreshFrequency: Refresh rate in milliseconds (number) - export const render: React component function that receives {output} prop (function) - export const className: CSS positioning for absolute placement (string) Example format (customize for each request): WriteUbersichtWidgetToFileSystem({jsxContent: `export const command = "echo hello"; export const refreshFrequency = 1000; export const render = ({output}) => { return <div>{output}</div>; }; export const className = "top: 20px; left: 20px;"`}) ### Rules: - The terms "ubersicht widget", "widget", "a widget", "the widget" must all be interpreted as "Übersicht widget" - Generate complete, valid JSX code that follows the Übersicht widget API - When you generate a widget, don't just show JSON or code - you MUST call the WriteUbersichtWidgetToFileSystem tool - Report the results to the user after calling the tool ### Examples: - "Generate a Übersicht widget" → Use WriteUbersichtWidgetToFileSystem tool - "Can you add a widget that shows the time" → Use WriteUbersichtWidgetToFileSystem tool - "Create a widget with a button" → Use WriteUbersichtWidgetToFileSystem tool When the script that I use to compose the full training set is executed, entry['prompt'] and entry['code'] contain the prompt and the resulting JSX code for one of the examples I'm feeding to the training session. This is repeated for about 60 such examples that I have in my sample data collection. Thanks for any help. Michael
6
0
935
Nov ’25
Apple Intelligence stuck at 100% on macOS 26 Beta 1
Hello, I'm unable to develop for Apple Intelligence on my Mac Studio, M1 Max running macOS 26 beta 1. The models get downloaded and I can also verify that they exist in /System/Library/AssetsV2/ however the download progress remains stuck at 100%. Checking console logs shows the process generativeexperiencesd reporting the following: My device region and language is set to English (India). Things I've already tried: Changing language and region to English (US) Reinstalling macOS Trying with a different ISP via hotspot.
6
10
487
Jun ’25
Converting GenerableContent to JSON string
Hey, I receive GenerableContent as follows: let response = try await session.respond(to: "", schema: generationSchema) And it wraps GeneratedJSON which seems to be private. What is the best way to get a string / raw value out of it? I noticed it could theoretically be accessed via transcriptEntries but it's not ideal.
6
0
213
Jul ’25
tensorflow-metal for Python3.12 and tensorflow 2.17.x
Hi, The most recent version of tensorflow-metal is only available for macosx 12.0 and python up to version 3.11. Is there any chance it could be updated with wheels for macos 15 and Python 3.12 (which is the default version supported for tensrofllow 2.17+)? I'd note that even downgrading to Python 3.11 would not be sufficient, as the wheels only work for macos 12. Thanks.
5
8
2.3k
Feb ’25
Issues with using ClassifyImageRequest() on an Xcode simulator
Hello, I am developing an app for the Swift Student challenge; however, I keep encountering an error when using ClassifyImageRequest from the Vision framework in Xcode: VTEST: error: perform(_:): inside 'for await result in resultStream' error: internalError("Error Domain=NSOSStatusErrorDomain Code=-1 \"Failed to create espresso context.\" UserInfo={NSLocalizedDescription=Failed to create espresso context.}") It works perfectly when testing it on a physical device, and I saw on another thread that ClassifyImageRequest doesn't work on simulators. Will this cause problems with my submission to the challenge? Thanks
5
1
771
Feb ’25
FoundationModel, context length, and testing
I am working on an app using FoundationModels to process web pages. I am looking to find ways to filter the input to fit within the token limits. I have unit tests, UI tests and the app running on an iPad in the simulator. It appears that the different configurations of the test environment seems to affect the token limits. That is, the same input in a unit test and UI test will hit different token limits. Is this correct? Or is this an artifact of my test tooling?
5
0
923
2w
Foundation Models performance reality check - anyone else finding it slow?
Testing Foundation Models framework with a health-focused recipe generation app. The on-device approach is appealing but performance is rough. Taking 20+ seconds just to get recipe name and description. Same content from Claude API: 4 seconds. I know it's beta and on-device has different tradeoffs, but this is approaching unusable territory for real-time user experience. The streaming helps psychologically but doesn't mask the underlying latency.The privacy/cost benefits are compelling but not if users abandon the feature before it completes. Anyone else seeing similar performance? Is this expected for beta, or are there optimization techniques I'm missing?
5
0
283
Jul ’25
Inform iOS about AppShortcutsProvider
I've been following along with "App Shortcuts" development but cannot get Siri to run my Intent. The intent on its own works in Shortcuts, along with a couple others that aren't in the AppShortcutsProvder structure. I keep getting the following two errors, but cannot figure out why this is occurring with documentation or other forum posts. No ConnectionContext found for 12909953344 Attempted to fetch App Shortcuts, but couldn't find the AppShortcutsProvider. Here are the relevant snippets of code - (1) The AppIntent definition struct SetBrightnessIntent: AppIntent { static var title = LocalizedStringResource("Set Brightness") static var description = IntentDescription("Set Glass Display Brightness") @Parameter(title: "Level") var level: Int? static var parameterSummary: some ParameterSummary { Summary("Set Brightness to \(\.$level)%") } func perform() async throws -> some IntentResult { guard let level = level else { throw $level.needsValueError("Please provide a brightness value") } if level > 100 || level <= 0 { throw $level.needsValueError("Brightness must be between 1 and 100") } // do stuff with level return .result() } } (2) The AppShortcutsProvider (defined in my iOS app target, there are no other targets) struct MyAppShortcuts: AppShortcutsProvider { static var shortcutTileColor: ShortcutTileColor = .grayBlue @AppShortcutsBuilder static var appShortcuts: [AppShortcut] { AppShortcut( intent: SetBrightnessIntent(), phrases: [ "set \(.applicationName) brightness to \(\.$level)", "set \(.applicationName) brightness to \(\.$level) percent" ], shortTitle: LocalizedStringResource("Set Glass Brightness"), systemImageName: "sun.max" ) } } Does anything here look wrong? Is there some magical key that I need to specify in Info.plist to get Siri to recognize the AppShortcutsProvider? On Xcode 16.2 and iOS 18.2 (non-beta).
5
0
1.2k
Jan ’25
CoreML regression between macOS 26.0.1 and macOS 26.1 Beta causing scrambled tensor outputs
We’ve encountered what appears to be a CoreML regression between macOS 26.0.1 and macOS 26.1 Beta. In macOS 26.0.1, CoreML models run and produce correct results. However, in macOS 26.1 Beta, the same models produce scrambled or corrupted outputs, suggesting that tensor memory is being read or written incorrectly. The behavior is consistent with a low-level stride or pointer arithmetic issue — for example, using 16-bit strides on 32-bit data or other mismatches in tensor layout handling. Reproduction Install ON1 Photo RAW 2026 or ON1 Resize 2026 on macOS 26.0.1. Use the newest Highest Quality resize model, which is Stable Diffusion–based and runs through CoreML. Observe correct, high-quality results. Upgrade to macOS 26.1 Beta and run the same operation again. The output becomes visually scrambled or corrupted. We are also seeing similar issues with another Stable Diffusion UNet model that previously worked correctly on macOS 26.0.1. This suggests the regression may affect multiple diffusion-style architectures, likely due to a change in CoreML’s tensor stride, layout computation, or memory alignment between these versions. Notes The affected models are exported using standard CoreML conversion pipelines. No custom operators or third-party CoreML runtime layers are used. The issue reproduces consistently across multiple machines. It would be helpful to know if there were changes to CoreML’s tensor layout, precision handling, or MLCompute backend between macOS 26.0.1 and 26.1 Beta, or if this is a known regression in the current beta.
5
3
1.6k
2w