Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Created

A Summary of the WWDC25 Group Lab - Machine Learning and AI Frameworks
At WWDC25 we launched a new type of Lab event for the developer community - Group Labs. A Group Lab is a panel Q&A designed for a large audience of developers. Group Labs are a unique opportunity for the community to submit questions directly to a panel of Apple engineers and designers. Here are the highlights from the WWDC25 Group Lab for Machine Learning and AI Frameworks. What are you most excited about in the Foundation Models framework? The Foundation Models framework provides access to an on-device Large Language Model (LLM), enabling entirely on-device processing for intelligent features. This allows you to build features such as personalized search suggestions and dynamic NPC generation in games. The combination of guided generation and streaming capabilities is particularly exciting for creating delightful animations and features with reliable output. The seamless integration with SwiftUI and the new design material Liquid Glass is also a major advantage. When should I still bring my own LLM via CoreML? It's generally recommended to first explore Apple's built-in system models and APIs, including the Foundation Models framework, as they are highly optimized for Apple devices and cover a wide range of use cases. However, Core ML is still valuable if you need more control or choice over the specific model being deployed, such as customizing existing system models or augmenting prompts. Core ML provides the tools to get these models on-device, but you are responsible for model distribution and updates. Should I migrate PyTorch code to MLX? MLX is an open-source, general-purpose machine learning framework designed for Apple Silicon from the ground up. It offers a familiar API, similar to PyTorch, and supports C, C++, Python, and Swift. MLX emphasizes unified memory, a key feature of Apple Silicon hardware, which can improve performance. It's recommended to try MLX and see if its programming model and features better suit your application's needs. MLX shines when working with state-of-the-art, larger models. Can I test Foundation Models in Xcode simulator or device? Yes, you can use the Xcode simulator to test Foundation Models use cases. However, your Mac must be running macOS Tahoe. You can test on a physical iPhone running iOS 18 by connecting it to your Mac and running Playgrounds or live previews directly on the device. Which on-device models will be supported? any open source models? The Foundation Models framework currently supports Apple's first-party models only. This allows for platform-wide optimizations, improving battery life and reducing latency. While Core ML can be used to integrate open-source models, it's generally recommended to first explore the built-in system models and APIs provided by Apple, including those in the Vision, Natural Language, and Speech frameworks, as they are highly optimized for Apple devices. For frontier models, MLX can run very large models. How often will the Foundational Model be updated? How do we test for stability when the model is updated? The Foundation Model will be updated in sync with operating system updates. You can test your app against new model versions during the beta period by downloading the beta OS and running your app. It is highly recommended to create an "eval set" of golden prompts and responses to evaluate the performance of your features as the model changes or as you tweak your prompts. Report any unsatisfactory or satisfactory cases using Feedback Assistant. Which on-device model/API can I use to extract text data from images such as: nutrition labels, ingredient lists, cashier receipts, etc? Thank you. The Vision framework offers the RecognizeDocumentRequest which is specifically designed for these use cases. It not only recognizes text in images but also provides the structure of the document, such as rows in a receipt or the layout of a nutrition label. It can also identify data like phone numbers, addresses, and prices. What is the context window for the model? What are max tokens in and max tokens out? The context window for the Foundation Model is 4,096 tokens. The split between input and output tokens is flexible. For example, if you input 4,000 tokens, you'll have 96 tokens remaining for the output. The API takes in text, converting it to tokens under the hood. When estimating token count, a good rule of thumb is 3-4 characters per token for languages like English, and 1 character per token for languages like Japanese or Chinese. Handle potential errors gracefully by asking for shorter prompts or starting a new session if the token limit is exceeded. Is there a rate limit for Foundation Models API that is limited by power or temperature condition on the iPhone? Yes, there are rate limits, particularly when your app is in the background. A budget is allocated for background app usage, but exceeding it will result in rate-limiting errors. In the foreground, there is no rate limit unless the device is under heavy load (e.g., camera open, game mode). The system dynamically balances performance, battery life, and thermal conditions, which can affect the token throughput. Use appropriate quality of service settings for your tasks (e.g., background priority for background work) to help the system manage resources effectively. Do the foundation models support languages other than English? Yes, the on-device Foundation Model is multilingual and supports all languages supported by Apple Intelligence. To get the model to output in a specific language, prompt it with instructions indicating the user's preferred language using the locale API (e.g., "The user's preferred language is en-US"). Putting the instructions in English, but then putting the user prompt in the desired output language is a recommended practice. Are larger server-based models available through Foundation Models? No, the Foundation Models API currently only provides access to the on-device Large Language Model at the core of Apple Intelligence. It does not support server-side models. On-device models are preferred for privacy and for performance reasons. Is it possible to run Retrieval-Augmented Generation (RAG) using the Foundation Models framework? Yes, it is possible to run RAG on-device, but the Foundation Models framework does not include a built-in embedding model. You'll need to use a separate database to store vectors and implement nearest neighbor or cosine distance searches. The Natural Language framework offers simple word and sentence embeddings that can be used. Consider using a combination of Foundation Models and Core ML, using Core ML for your embedding model.
1
0
1.3k
Jun ’25
Shortcut - “Use Model” error handling?
I have a series of shortcuts that I’ve written that use the “Use Model” action to do various things. For example, I have a shortcut “Clipboard Markdown to Notes” that takes the content of the clipboard, creates a new note in Notes, converts the markdown content to rich text, adds it to the note etc. One key step is to analyze the markdown content with “Use Model” and generate a short descriptive title for the note. I use the on-device model for this, but sometimes the content and prompt exceed the context window size and the action fails with an error message to that effect. In that case, I’d like to either repeat the action using the Cloud model, or, if the error was a refusal, to prompt the user to enter a title to use. I‘ve tried using an IF based on whether the response had any text in it, but that didn’t work. No matter what I’ve tried, I can’t seem to find a way to catch the error from Use Model, determine what the error was, and take appropriate action. Is there a way to do this? (And by the way, a huge ”thank you” to whoever had the idea of making AppIntents visible in Shortcuts and adding the Use Model action — has made a huge difference already, and it lets us see what Siri will be able to use as well.)
3
0
444
6d
FoundationModels coding
I am writing an app that parses text and conducts some actions. I don't want to give too much away ;) However, I am having a huge problem with token sizes. LanguageModelSession will of course give me the on device model 4096 available, but when you go over 4096, my code doesn't seem to be falling back to PCC, or even the system configured ChatGPT. Can anyone assist me with this? For some reason, after reading the docs, it's very unclear how this transition between the three takes place.
3
0
594
1w
ML contraints & Timeout clarificaitions for Message Filtering Extension
Hello everyone, I’m currently working with the Message Filtering Extension and would really appreciate some clarification around its performance and operational constraints. While the extension is extremely powerful and useful, I’ve found that some important details are either unclear or not well covered in the available documentation. There are two main areas I’m trying to understand better: Machine learning model constraints within the extension In our case, we already have an existing ML model that classifies messages (and are not dependant on Apple's built-in models). We’re evaluating whether and how it can be used inside the extension. Specifically, I’m trying to understand: Are there documented limits on the size of an ML model (e.g., maximum bundle size or model file size in MB)? What are the memory constraints for a model once loaded into memory by the extension? Under what conditions would the system terminate or “kick out” the extension due to memory or performance pressure? Message processing timeouts and execution constraints What is the timeout for processing a single received message? At what point will the OS stop waiting for the extension’s response and allow the message by default (for example, if the extension does not respond in time)? Any guidance, official references, or practical experience from Apple engineers or other developers would be greatly appreciated. Thanks in advance for your help,
0
0
166
1w
Create ML fails to train a text classifier using the BERT transfer learning algorithm
I'm trying to train a text classifier model in Create ML. The Create ML app/framework offers five algorithms. I can successfully train the model with all of the algorithms except the BERT transfer learning option. When I select this algorithm, Create ML simply stops the training process immediately after the initial feature extraction phase (with no reported error). What I've tried: I tried simplifying the dataset to just a few classes and short examples in case there was a problem with the data. I tried experimenting with the number of iterations and language/script options. I checked Console.app for logged errors and found the following for the Create ML app: error 10:38:28.385778+0000 Create ML Couldn't read event column - category is invalid. Format string is : <private> error 10:38:30.902724+0000 Create ML Could not encode the entity <private>. Error: <private> I'm not sure if these errors are normal or indicative of a problem. I don't know what it means by the "event" column – I don't have an event column in my data and I don't believe there should be one. These errors are not reported when using the other algorithms. Given that I couldn't get the app to work with BERT, I switched over to the CreateML framework and followed the code samples given in the documentation. (By the way, there's an error in the docs: the line let (trainingData, testingData) = data.stratifiedSplit(on: "text", by: 0.8) should be stratifying on "label", not on "text"). The main chunk of code looks like this: var parameters = MLTextClassifier.ModelParameters( validation: .split(strategy: .automatic), algorithm: .transferLearning(.bertEmbedding, revision: 1), language: .english ) parameters.maxIterations = 100 let sentimentClassifier = try MLTextClassifier( trainingData: trainingData, textColumn: "text", labelColumn: "label", parameters: parameters ) Ultimately I want to train a single multilingual model, and I believe that BERT is the best choice for this. The problem is that there doesn't seem to be a way to choose the multilingual Latin script option in the API. In the Create ML app you can theoretically do this by selecting the Latin script with language set to "Automatic", as recommended in this WWDC video (relevant section starts at around 8:02). But, as far as I can tell, ModelParameters only lets you pick a specific language. I presume the framework must provide some way to do this, since the Create ML app uses the framework under the hood, but I can't see a way to do it. Another possibility is that the Create ML app might be misrepresenting the framework – perhaps selecting a specific language in the app doesn't actually make any difference – for example, maybe all Latin languages actually use the same model under the hood and the language selector is just there to guide people to the right choice (but this is just my speculation). Any help would be much appreciated! If possible, I'd prefer to use the Create ML app if I can get the BERT option to work – is this actually working for anyone? Or failing that, I want to use the framework to train a multilingual Latin model with BERT, so I'm looking for instructions on how to choose that specific option or confirmation that I can just choose .english to get the correct Latin multilingual model. I'm running Xcode 26.2 on Tahoe 21.1 on an M1 Pro MacBook Pro. I have version 6.2 of the Create ML app.
8
0
1.3k
1w
Translation Framework: Code 16 "Offline models not available" despite status showing .installed
Hi everyone, I'm experiencing an inconsistent behavior with the Translation framework on iOS 18. The LanguageAvailability.status() API reports language models as .installed, but translation fails with Code 16. Setup: Using translationTask modifier with TranslationSession Batch translation with explicit source/target languages Languages: Portuguese→English, German→English Issue: let status = await LanguageAvailability().status(from: sourceLang, to: targetLang) // Returns: .installed // But translation fails: let responses = try await session.translations(from: requests) // Error: TranslationErrorDomain Code=16 "Offline models not available" Logs: Language model installed: pt -> en Language model installed: de -> en Starting translation: de -> en Error Domain=TranslationErrorDomain Code=16 "Translation failed"NSLocalizedFailureReason=Offline models not available for language pair What I've tried: Re-downloading languages in Settings Using source: nil for auto-detection Fresh TranslationSession.Configuration each time Questions: Is there a way to force model re-validation/re-download programmatically? Should translationTask show download popup when Code 16 occurs? Has anyone found a reliable workaround? I've seen similar reports in threads 791357 and 777113. Any guidance appreciated! Thanks!
1
0
345
1w
Image object detection with video sizing issue
I'm working on my first model that detects bowling score screens, and I have it working with pictures no problem. But when it comes to video, I have a sizing issue. I added my model to a small app I wrote for taking a picture of a Bowling Scoring Screen, where my model will frame the screens in the video feed from the camera. My model works, but my boxes are about 2/3 the size of the screens being detected. I don't understand the theory of the video stream the camera is feeding me. What I mean is that I don't want to make tweaks to the size of my rectangles by making them larger, and I'm not sure if the video feed is larger than what I'm detecting in code. Questions I have are like is the video feed a certain resolution like 1980x something, or a much higher resolution in the 12 megapixel range? On a static image of say 1920x something, My alignment is perfect. AI says that it's my model training, that I'm training on square images but video is 16:9. Or that I'm producing 4:3 images in a 16:9 environment. I'm missing something here but not sure what it is. I already wrote code to force it to fit, but reverted back to trying for a natural fit.
1
0
295
2w
Foundation Models: Is the .anyOf guide guaranteed to produce a valid string?
I've created the following Foundation Models Tool, which uses the .anyOf guide to constrain the LLM's generation of suitable input arguments. When calling the tool, the model is only allowed to request one of a fixed set of sections, as defined in the sections array. struct SectionReader: Tool { let article: Article let sections: [String] let name: String = "readSection" let description: String = "Read a specific section from the article." var parameters: GenerationSchema { GenerationSchema( type: GeneratedContent.self, properties: [ GenerationSchema.Property( name: "section", description: "The article section to access.", type: String.self, guides: [.anyOf(sections)] ) ] ) } func call(arguments: GeneratedContent) async throws -> String { let requestedSectionName = try arguments.value(String.self, forProperty: "section") ... } } However, I have found that the model will sometimes call the tool with invalid (but plausible) section names, meaning that .anyOf is not actually doing its job (i.e. requestedSectionName is sometimes not a member of sections). The documentation for the .anyOf guide says, "Enforces that the string be one of the provided values." Is this a bug or have I made a mistake somewhere? Many thanks for any help you provide!
11
0
702
2w
Image Playground files suddenly not available
My app lets you create images with Image Playground. When the user approves an image I move it to the documents dir from the temp storage. With over a year of usage I’ve created a lot of images over time. Out of nowhere the app stopped loading my custom creations from Image Playground saying it couldn’t find the files. It still had my VoiceOver strings I had added for each image and still had the custom categories I assigned them. Debug code to look in the docs dir doesn’t find them. I downloaded the app’s container and only see the images I created as a test after the problem started. But my ~70MB app is still taking up 300MB on my iPhone so it feels like they’re there but not accessible. Is there anything else I can try?
2
0
768
3w
Image understanding to on-device model
I can’t seem to find a way to include an image when prompting the new on-device model in Xcode, even though Apple explicitly states that the model was trained and tested with image data (https://machinelearning.apple.com/research/apple-foundation-models-2025-updates). Has anyone managed to get this working, or are VLM-style capabilities simply not exposed yet?
1
0
385
4w
Khmer Script Misidentified as Thai in Vision Framework
It is vital for Apple to refine its OCR models to correctly distinguish between Khmer and Thai scripts. Incorrectly labeling Khmer text as Thai is more than a technical bug; it is a culturally insensitive error that impacts national identity, especially given the current geopolitical climate between Cambodia and Thailand. Implementing a more robust language-detection threshold would prevent these harmful misidentifications. There is a significant logic flaw in the VNRecognizeTextRequest language detection when processing Khmer script. When the property automaticallyDetectsLanguage is set to true, the Vision framework frequently misidentifies Khmer characters as Thai. While both scripts share historical roots, they are distinct languages with different alphabets. Currently, the model’s confidence threshold for distinguishing between these two scripts is too low, leading to incorrect OCR output in both developer-facing APIs and Apple’s native ecosystem (Preview, Live Text, and Photos). import SwiftUI import Vision class TextExtractor { func extractText(from data: Data, completion: @escaping (String) -> Void) { let request = VNRecognizeTextRequest { (request, error) in guard let observations = request.results as? [VNRecognizedTextObservation] else { completion("No text found.") return } let recognizedStrings = observations.compactMap { observation in let str = observation.topCandidates(1).first?.string return "{text: \(str!), confidence: \(observation.confidence)}" } completion(recognizedStrings.joined(separator: "\n")) } request.automaticallyDetectsLanguage = true // <-- This is the issue. request.recognitionLevel = .accurate let handler = VNImageRequestHandler(data: data, options: [:]) DispatchQueue.global(qos: .background).async { do { try handler.perform([request]) } catch { completion("Failed to perform OCR: \(error.localizedDescription)") } } } } Recognizing Khmer Confidence Score is low for Khmer text. (The output is in Thai language with low confidence score) Recognizing English Confidence Score is high expected. Recognizing Thai Confidence Score is high as expected Issues on Preview, Photos Khmer text Copied text Kouk Pring Chroum Temple [19121 รอาสายสุกตีนานยารรีสใหิสรราภูชิตีนนสุฐตีย์ [รุก เผือชิษาธอยกัตธ์ตายตราพาษชาณา ถวเชยาใบสราเบรถทีมูสินตราพาษชาณา ทีมูโษา เช็ก อาษเชิษฐอารายสุกบดตพรธุรฯ ตากร"สุก"ผาตากรธกรธุกเยากสเผาพศฐตาสาย รัอรณาษ"ตีพย" สเผาพกรกฐาภูชิสาเครๆผู:สุกรตีพาสเผาพสรอสายใผิตรรารตีพสๆ เดียอลายสุกตีน ธาราชรติ ธิพรหณาะพูชุบละเาหLunet De Lajonquiere ผารูกรสาราพารผรผาสิตภพ ตารสิทูก ธิพิ คุณที่นสายเระพบพเคเผาหนารเกะทรนภาษเราภุพเสารเราษทีเลิกสญาเราหรุฬารชสเกาก เรากุม สงสอบานตรเราะากกต่ายภากายระตารุกเตียน Recommended Solutions 1. Set a Threshold Filter out the detected result where the threshold is less than or equal to 0.5, so that it would not output low quality text which can lead to the issue. For example, let recognizedStrings = observations.compactMap { observation in if observation.confidence <= 0.5 { return nil } let str = observation.topCandidates(1).first?.string return "{text: \(str!), confidence: \(observation.confidence)}" } 2. Add Khmer Language Support This issue would never happen if the model has the capability to detect and recognize image with Khmer language. Doc2Text GitHub: https://github.com/seanghay/Doc2Text-Swift
2
0
860
Jan ’26
Defining a Foundation Models Tool with arguments determined at runtime
I'm experimenting with Foundation Models and I'm trying to understand how to define a Tool whose input argument is defined at runtime. Specifically, I want a Tool that takes a single String parameter that can only take certain values defined at runtime. I think my question is basically the same as this one: https://developer.apple.com/forums/thread/793471 However, the answer provided by the engineer doesn't actually demonstrate how to create the GenerationSchema. Trying to piece things together from the documentation that the engineer linked to, I came up with this: let citiesDefinedAtRuntime = ["London", "New York", "Paris"] let citySchema = DynamicGenerationSchema( name: "CityList", properties: [ DynamicGenerationSchema.Property( name: "city", schema: DynamicGenerationSchema( name: "city", anyOf: citiesDefinedAtRuntime ) ) ] ) let generationSchema = try GenerationSchema(root: citySchema, dependencies: []) let tools = [CityInfo(parameters: generationSchema)] let session = LanguageModelSession(tools: tools, instructions: "...") With the CityInfo Tool defined like this: struct CityInfo: Tool { let name: String = "getCityInfo" let description: String = "Get information about a city." let parameters: GenerationSchema func call(arguments: GeneratedContent) throws -> String { let cityName = try arguments.value(String.self, forProperty: "city") print("Requested info about \(cityName)") let cityInfo = getCityInfo(for: cityName) return cityInfo } func getCityInfo(for city: String) -> String { // some backend that provides the info } } This compiles and usually seems to work. However, sometimes the model will try to request info about a city that is not in citiesDefinedAtRuntime. For example, if I prompt the model with "I want to travel to Tokyo in Japan, can you tell me about this city?", the model will try to request info about Tokyo, even though this is not in the citiesDefinedAtRuntime array. My understanding is that this should not be possible – constrained generation should only allow the LLM to generate an input argument from the list of cities defined in the schema. Am I missing something here or overcomplicating things? What's the correct way to make sure the LLM can only call a Tool with an input parameter from a set of possible values defined at runtime? Many thanks!
2
0
1.1k
Dec ’25
recent JAX versions fail on Metal
Hi, I'm not sure whether this is the appropriate forum for this topic. I just followed a link from the JAX Metal plugin page https://developer.apple.com/metal/jax/ I'm writing a Python app with JAX, and recent JAX versions fail on Metal. E.g. v0.8.2 I have to downgrade JAX pretty hard to make it work: pip install jax==0.4.35 jaxlib==0.4.35 jax-metal==0.1.1 Can we get an updated release of jax-metal that would fix this issue? Here is the error I get with JAX v0.8.2: WARNING:2025-12-26 09:55:28,117:jax._src.xla_bridge:881: Platform 'METAL' is experimental and not all JAX functionality may be correctly supported! WARNING: All log messages before absl::InitializeLog() is called are written to STDERR W0000 00:00:1766771728.118004 207582 mps_client.cc:510] WARNING: JAX Apple GPU support is experimental and not all JAX functionality is correctly supported! Metal device set to: Apple M3 Max systemMemory: 36.00 GB maxCacheSize: 13.50 GB I0000 00:00:1766771728.129886 207582 service.cc:145] XLA service 0x600001fad300 initialized for platform METAL (this does not guarantee that XLA will be used). Devices: I0000 00:00:1766771728.129893 207582 service.cc:153] StreamExecutor device (0): Metal, <undefined> I0000 00:00:1766771728.130856 207582 mps_client.cc:406] Using Simple allocator. I0000 00:00:1766771728.130864 207582 mps_client.cc:384] XLA backend will use up to 28990554112 bytes on device 0 for SimpleAllocator. Traceback (most recent call last): File "<string>", line 1, in <module> import jax; print(jax.numpy.arange(10)) ~~~~~~~~~~~~~~~~^^^^ File "/Users/florin/git/FlorinAndrei/star-cluster-simulator/.venv/lib/python3.13/site-packages/jax/_src/numpy/lax_numpy.py", line 5951, in arange return _arange(start, stop=stop, step=step, dtype=dtype, out_sharding=sharding) File "/Users/florin/git/FlorinAndrei/star-cluster-simulator/.venv/lib/python3.13/site-packages/jax/_src/numpy/lax_numpy.py", line 6012, in _arange return lax.broadcasted_iota(dtype, (size,), 0, out_sharding=out_sharding) ~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/florin/git/FlorinAndrei/star-cluster-simulator/.venv/lib/python3.13/site-packages/jax/_src/lax/lax.py", line 3415, in broadcasted_iota return iota_p.bind(dtype=dtype, shape=shape, ~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^ dimension=dimension, sharding=out_sharding) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/florin/git/FlorinAndrei/star-cluster-simulator/.venv/lib/python3.13/site-packages/jax/_src/core.py", line 633, in bind return self._true_bind(*args, **params) ~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^ File "/Users/florin/git/FlorinAndrei/star-cluster-simulator/.venv/lib/python3.13/site-packages/jax/_src/core.py", line 649, in _true_bind return self.bind_with_trace(prev_trace, args, params) ~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/florin/git/FlorinAndrei/star-cluster-simulator/.venv/lib/python3.13/site-packages/jax/_src/core.py", line 661, in bind_with_trace return trace.process_primitive(self, args, params) ~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^ File "/Users/florin/git/FlorinAndrei/star-cluster-simulator/.venv/lib/python3.13/site-packages/jax/_src/core.py", line 1210, in process_primitive return primitive.impl(*args, **params) ~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^ File "/Users/florin/git/FlorinAndrei/star-cluster-simulator/.venv/lib/python3.13/site-packages/jax/_src/dispatch.py", line 91, in apply_primitive outs = fun(*args) jax.errors.JaxRuntimeError: UNKNOWN: -:0:0: error: unknown attribute code: 22 -:0:0: note: in bytecode version 6 produced by: StableHLO_v1.13.0 -------------------- For simplicity, JAX has removed its internal frames from the traceback of the following exception. Set JAX_TRACEBACK_FILTERING=off to include these. I0000 00:00:1766771728.149951 207582 mps_client.h:209] MetalClient destroyed.
0
0
460
Dec ’25
Pre-inference AI Safety Governor for FoundationModels (Swift, On-Device)
Greetings, and Happy Holidays, I've been building an on-device AI safety layer called Newton Engine, designed to validate prompts before they reach FoundationModels (or any LLM). Wanted to share v1.3 and get feedback from the community. The Problem Current AI safety is post-training — baked into the model, probabilistic, not auditable. When Apple Intelligence ships with FoundationModels, developers will need a way to catch unsafe prompts before inference, with deterministic results they can log and explain. What Newton Does Newton validates every prompt pre-inference and returns: Phase (0/1/7/8/9) Shape classification Confidence score Full audit trace If validation fails, generation is blocked. If it passes (Phase 9), the prompt proceeds to the model. v1.3 Detection Categories (14 total) Jailbreak / prompt injection Corrosive self-negation ("I hate myself") Hedged corrosive ("Not saying I'm worthless, but...") Emotional dependency ("You're the only one who understands") Third-person manipulation ("If you refuse, you're proving nobody cares") Logical contradictions ("Prove truth doesn't exist") Self-referential paradox ("Prove that proof is impossible") Semantic inversion ("Explain how truth can be false") Definitional impossibility ("Square circle") Delegated agency ("Decide for me") Hallucination-risk prompts ("Cite the 2025 CDC report") Unbounded recursion ("Repeat forever") Conditional unbounded ("Until you can't") Nonsense / low semantic density Test Results 94.3% catch rate on 35 adversarial test cases (33/35 passed). Architecture User Input ↓ [ Newton ] → Validates prompt, assigns Phase ↓ Phase 9? → [ FoundationModels ] → Response Phase 1/7/8? → Blocked with explanation Key Properties Deterministic (same input → same output) Fully auditable (ValidationTrace on every prompt) On-device (no network required) Native Swift / SwiftUI String Catalog localization (EN/ES/FR) FoundationModels-ready (#if canImport) Code Sample — Validation let governor = NewtonGovernor() let result = governor.validate(prompt: userInput) if result.permitted { // Proceed to FoundationModels let session = LanguageModelSession() let response = try await session.respond(to: userInput) } else { // Handle block print("Blocked: Phase \(result.phase.rawValue) — \(result.reasoning)") print(result.trace.summary) // Full audit trace } Questions for the Community Anyone else building pre-inference validation for FoundationModels? Thoughts on the Phase system (0/1/7/8/9) vs. simple pass/fail? Interest in Shape Theory classification for prompt complexity? Best practices for integrating with LanguageModelSession? Links GitHub: https://github.com/jaredlewiswechs/ada-newton Technical overview: parcri.net Happy to share more implementation details. Looking for feedback, collaborators, and anyone else thinking about deterministic AI safety on-device. parcri.net has the link :)
1
0
302
Dec ’25
SoundAnalysis built-in classifier fails in background (SNErrorCode.operationFailed)
I’m seeing consistent failures using SoundAnalysis live classification when my app moves to the background. Setup iOS 17.x AVAudioEngine mic capture SNAudioStreamAnalyzer SNClassifySoundRequest(classifierIdentifier: .version1) UIBackgroundModes = audio AVAudioSession .record / .playAndRecord, active Audio capture + level metering continue working in background (mic indicator stays on) Issue As soon as the app enters background / screen locks: SoundAnalysis starts failing every second with domain:com.apple.SoundAnalysis, code:2(SNErrorCode.operationFailed) Audio capture itself continues normally When the app returns to foreground, classification immediately resumes without restarting the engine/analyzer Question Is live background sound classification with the built-in SoundAnalysis classifier officially unsupported or known to fail in background? If so, is a custom Core ML model the only supported approach for background detection? Or is there a required configuration I’m missing to keep SNClassifySoundRequest(.version1) running in background? Thanks for any clarification.
0
1
126
Dec ’25
LanguageModelSession with multiple tools and structured outpout
Hi, I'm using LanguageModelSession and giving it two different tools to query data from a local database. I'm wondering how I can have the session generate structured content as the response that includes data one or both tools (or no tool at all). Here is an example of what I'm trying to do: Let's say the app has access to a database that contains information about exercise and sleep data (this is just an analogy). There are two tools, GetExerciseData() and GetSleepData(). The user may then prompt something like, "how well did I sleep in November". I have this working so that it calls through to the right tool, which would return a SleepSummary. However, I can't figure out how to have the session return the right structured data. I can do this and get back good text data: let response = session.respond(to: userInput), but I believe I want to do something like: let response = session.respond(to: trimmed, generating: <SomeStructure?>) Sometimes the model I run one tool or the other, or both tools, or no tool at all. Any help of what the right way to go about this would be much appreciated. Most of the example I found have to do with 1 tool.
1
0
480
Dec ’25