Prioritize user privacy and data security in your app. Discuss best practices for data handling, user consent, and security measures to protect user information.

Posts under General subtopic

Post

Replies

Boosts

Views

Activity

Cannot revoke the account of Sign in with Apple
Our service has ended and the app has been removed from the App store. This app supported Sign in with Apple, but even if I try to revoke the account from the iOS settings or account.apple.com on the web, but can't delete it and no error is displayed. Does anyone know the cause of this problem or have encountered it? I'm not sure if it's related, but this app was previously transferred from another organization.
0
0
262
Jan ’25
Can I still use the private email address if I disable Sign in with Apple?
We currently have an app that uses Sign in with Apple (SIWA), and we are planning to discontinue the SIWA feature. Specifically, we intend to disable SIWA from the app's Capabilities in the Apple Developer Center. My question is, if we disable SIWA, can we continue to use the private email addresses of users who registered using SIWA? Or will disabling SIWA also invalidate the users' private email addresses? We are considering asking users to change to a different, valid email address in our app. However, if the private email addresses are invalidated, we will not be able to disable SIWA until all users have completed the email address change. If anyone has knowledge about these behaviors, please let us know.
0
0
221
Mar ’25
Unable to give permission to app I'm building to access devices on local network on Sequoia - no prompt given
I am developing apps using NWJS framework, which access devices on the local network. I am doing this on Sequoia on Macos (Desktop). I have developed other apps using NWJS before, but on earlier versions of Macos. My issue is, I am unable to give my app permission to app to access devices on local network on one of the apps. Some background: Other apps which I have used which access devices on the local network, on first-time launching, have given a prompt asking me if I want to allow or deny access to local device for the app. However, on first-time launching (and many others after that), It simply says the device cannot be reached, and I never get a prompt asking me if I want to allow or deny access to local device for my app. In its barebones proof-of-concept stage of my app, I have an iframe who's src attribute is the IP address of a device known on the network with that address. I have tried the protocol https://192.168.1.99 and http://192.168.1.99 in the src attribute. This protocol works in another app I have built where upon first-time launch, I was able to get a prompt and give it the needed permission. If I check in System Settings > Privacy and Security > Network, the app doesn't appear where I can toggle a setting. I also am unable to explicitly add my app to the list. ** This worked for one app, but not another: In researching this issue, it was recommended that I add the following keys in info.plist: com.apple.developer.networking.multicast - boolean true NSLocalNetworkUsageDescription - string description NSNearbyInteractionUsageDescription - string description This worked for one of my apps, but not another, which has a nearly identical structure. In fact, other than CFBundleIdentifier, CFBundleDisplayName and CFBundleName, info.plist is identical. Why did this work one time, and how can I get my app to prompt for permission for local network access?
0
1
549
Dec ’24
Receiving Apple SignIn profile info again after deleting account
We are currently trying to fix a bug when using SignIn with Apple. It appears that on some occasions we are not receiving a user's profile info (name, email) when a new account is created. After doing some investigation we believe this bug is due to the same Apple login being used as an already deleted account. ASF only appears to send profile info the very first time an Apple login is used. If that account is deleted and another is created with the same apple login we won't receive the profile info. As a result we are not in compliance with Apple's guidelines requiring that we use the provided profile info with Apple SigIn, and need to prompt users to enter it again. Is there a process in place to properly "clear" a user after their account is deleted in our system, so that the next time a user creates an account with the same Apple login, we receive their profile info again?
0
5
413
Mar ’25
appleid.apple.com response servers IPs
Developers of our e-shop are preparing to enable Apple Sign In for account login. Apple ID verification is conducted via the domain appleid.apple.com, and the responses should be coming back from the following two Apple IP addresses: IPv4 Address: 17.32.194.6 IPv4 Address: 17.32.194.37 Question is whether these addresses are correct and if they remain unchanged over time. Alternatively, it is existing an official list of IP addresses that may be used for Apple Sign In verification response? This is necessary to ensure precise network communication settings and protection by F5 security solution. Thanks a lot for answers.
0
0
154
Mar ’25
Apple Sign-In Not Returning First Name and Last Name Despite name Scope Requested
Hi Apple Developer Team, I am encountering an issue with the “Sign in with Apple” feature. While implementing this functionality in my dotnet application, I noticed that the user’s first name and last name are not being returned, even though I have explicitly requested the name scope. However, the email and other requested information are returned successfully. Here are the details of my implementation: 1. Scope Requested: name, email 2. Response Received: Email and other data are present, but fullName is missing or null. 3. Expected Behavior: I expected to receive the user’s first and last name as per the fullName scope. I have verified the implementation and ensured that the correct scopes are being passed in the request. Could you please help clarify the following? 1. Are there specific conditions under which Apple may not return the user’s fullName despite the scope being requested? 2. Is there a recommended approach or fallback mechanism to handle this scenario? 3. Could this behavior be related to a limitation or change in the API, or might it be an issue on my end? I also came to know that for initial sign in the user details will be displayed in the signin-apple payload as Form data but how do I fetch those form-data from the signin-apple request, please suggest I would greatly appreciate any guidance or solutions to resolve this issue. Thank you for your support!
0
3
214
Mar ’25
SFAuthorizationPluginView and invalid password
I am using SFAuthorizationPluginView in my Security agent plugin. My code expects that its willActivate method be called. With normal screensaver unlock, this works fine. However if I enter an invalid password, then enter the correct password, I never get the willActivate call. I have reproduced this with Quinn's LoginUIAuthPlugin from the QAuthPlugins example code. My mechanisms look like this with LoginUIAuthPlugin: mechanisms HyprAuthPlugin:invoke builtin:authenticate,privileged PKINITMechanism:auth,privileged LoginUIAuthPlugin:login CryptoTokenKit:login I would like to be able to get my plugin working properly when the user had previously entered an invalid password.
0
0
393
Dec ’24
Fraud prevention using Device Check when publishing multiple apps
I would like to confirm about fraud prevention using Device Check when publishing multiple apps. If the Team ID and Key ID are the same, will the values be shared across all apps with Device Check? With Device Check, only two keys can be created per developer account, and these two are primarily intended for key renewal in case of a leak, rather than for assigning different keys to each app, correct? If both 1 and 2 are correct, does that mean that Device Check should not be used to manage "one-time-only rewards per device" when offering them across multiple apps? Thank you very much for your confirmation.
0
0
171
Apr ’25
App Attest server unreachable – DNS or firewall issue suspected
Hello, We are working on integrating app integrity verification into our service application, following Apple's App Attest and DeviceCheck guide. Our server issues a challenge to the client, which then sends the challenge, attestation, and keyId in CBOR format to Apple's App Attest server for verification. However, we are unable to reach both https://attest.apple.com and https://attest.development.apple.com due to network issues. These attempts have been made from both our internal corporate network and mobile hotspot environments. Despite adjusting DNS settings and other configurations, the issue persists. Are there alternative methods or solutions to address this problem? Any recommended network configurations or guidelines to successfully connect to Apple's App Attest servers would be greatly appreciated. Thank you.
0
0
129
May ’25
Should ATT come before a 3rd party CMP? Does the order matter?
When presenting a cookie banner for GDPR purposes, should ATT precede the cookie banner? It seems that showing a Cookie Banner and then showing the ATT permission prompt afterwards (if a user elects to allow cookies/tracking) would be more appropriate. Related question: Should the “Allow Tracking” toggle for an app in system settings serve as a master switch for any granular tracking that might be managed by a 3rd party Consent Management Platform? If ATT is intended to serve as a master switch for tracking consent, if the ATT prompt is presented before a cookie banner, should the banner even appear if a user declines tracking consent? I’m not finding any good resources that describe this flow in detail and I’m seeing implementations all over the place on this. Help! Thanks!!!
0
0
185
Jul ’25
App Sandbox Resources
General: Forums subtopic: Privacy & Security > General Forums tag: App Sandbox App Sandbox documentation App Sandbox Design Guide documentation — This is no longer available from Apple. There’s still some info in there that isn’t covered by the current docs but, with the latest updates, it’s pretty minimal (r. 110052019). Still, if you’re curious, you can consult an old copy [1]. App Sandbox Temporary Exception Entitlements archived documentation — To better understand the role of temporary exception entitlements, see this post. Embedding a command-line tool in a sandboxed app documentation Discovering and diagnosing App Sandbox violations (replaces the Viewing Sandbox Violation Reports forums post) Resolving App Sandbox Inheritance Problems forums post The Case for Sandboxing a Directly Distributed App forums post Implementing Script Attachment in a Sandboxed App forums post Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" [1] For example, this one archived by the Wayback Machine.
0
0
2.7k
Jul ’25
Privacy Resources
General: Forums topic: Privacy & Security Forums tag: Privacy Developer > Security — This also covers privacy topics. App privacy details on the App Store UIKit > Protecting the User’s Privacy documentation Bundle Resources > Privacy manifest files documentation TN3181 Debugging an invalid privacy manifest technote TN3182 Adding privacy tracking keys to your privacy manifest technote TN3183 Adding required reason API entries to your privacy manifest technote TN3184 Adding data collection details to your privacy manifest technote TN3179 Understanding local network privacy technote Handling ITMS-91061: Missing privacy manifest forums post Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com"
0
0
137
Jul ’25
[SSL Pinning] NSPinnedDomains is not working on my testing
Hi, Just follow the related post to implement this method in the app, but it gave me error, like: "An SSL error has occurred and a secure connection to the server cannot be made" the info plist configuration like below, NSPinnedDomains mysite.com NSIncludesSubdomains NSPinnedCAIdentities SPKI-SHA256-BASE64 r/mIkG3eEpVdm+u/ko/cwxzOMo1bk4TyHIlByibiA5E= The pub key is right for me, since it works when I use different pub key pinning through URLSession interface. So here, I dont know where to start the troubleshooting, any advice would be appreciated.
0
0
311
Dec ’24
Privacy & Security Resources
General: Forums topic: Privacy & Security Privacy Resources Security Resources Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com"
0
0
323
Jul ’25
Importing a PEM-based RSA Private Key and its Certificate
This post is an extension to Importing Cryptographic Keys that covers one specific common case: importing a PEM-based RSA private key and its certificate to form a digital identity. If you have questions or comments, start a new thread in Privacy & Security > General. Tag your thread with Security so that I see it. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Importing a PEM-based RSA Private Key and its Certificate I regularly see folks struggle to import an RSA private key and its corresponding certificate. Importing Cryptographic Keys outlines various options for importing keys, but in this post I want to cover one specific case, namely, a PEM-based RSA private key and its corresponding certificate. Together these form a digital identity, represented as a SecIdentity object. IMPORTANT If you can repackage your digital identity as a PKCS#12, please do. It’s easy to import that using SecPKCS12Import. If you can switch to an elliptic curve (EC) private key, please do. It’s generally better and Apple CryptoKit has direct support for importing an EC PEM. Assuming that’s not the case, let’s explore how to import a PEM-base RSA private key and its corresponding certificate to form a digital identity. Note The code below was built with Xcode 16.2 and tested on the iOS 18.2 simulator. It uses the helper routines from Calling Security Framework from Swift. This code assumes the data protection keychain. If you’re targeting macOS, add kSecUseDataProtectionKeychain to all the keychain calls. See TN3137 On Mac keychain APIs and implementations for more background to that. Unwrap the PEM To start, you need to get the data out of the PEM: /// Extracts the data from a PEM. /// /// As PEM files can contain a large range of data types, you must supply the /// expected prefix and suffix strings. For example, for a certificate these /// are `"-----BEGIN CERTIFICATE-----` and `-----END CERTIFICATE-----`. /// /// - important: This assumes the simplest possible PEM format. It does not /// handle metadata at the top of the PEM or PEMs with multiple items in them. func dataFromPEM(_ pem: String, _ expectedPrefix: String, _ expectedSuffix: String) -> Data? { let lines = pem.split(separator: "\n") guard let first = lines.first, first == expectedPrefix, let last = lines.last, last == expectedSuffix else { return nil } let base64 = lines.dropFirst().dropLast().joined() guard let data = Data(base64Encoded: base64) else { return nil } return data } IMPORTANT Read the doc comment to learn about some important limitations with this code. Import a Certificate When adding a digital identity to the keychain, it’s best to import the certificate and the key separately and then add them to the keychain. That makes it easier to track down problems you encounter. To import a PEM-based certificate, extract the data from the PEM and call SecCertificateCreateWithData: /// Import a certificate in PEM format. /// /// - important: See ``dataFromPEM(_:_:_:)`` for some important limitations. func importCertificatePEM(_ pem: String) throws -> SecCertificate { guard let data = dataFromPEM(pem, "-----BEGIN CERTIFICATE-----", "-----END CERTIFICATE-----"), let cert = SecCertificateCreateWithData(nil, data as NSData) else { throw NSError(domain: NSOSStatusErrorDomain, code: Int(errSecParam), userInfo: nil) } return cert } Here’s an example that shows this in action: let benjyCertificatePEM = """ -----BEGIN CERTIFICATE----- MIIC4TCCAcmgAwIBAgIBCzANBgkqhkiG9w0BAQsFADAfMRAwDgYDVQQDDAdNb3Vz ZUNBMQswCQYDVQQGEwJHQjAeFw0xOTA5MzAxNDI0NDFaFw0yOTA5MjcxNDI0NDFa MB0xDjAMBgNVBAMMBUJlbmp5MQswCQYDVQQGEwJHQjCCASIwDQYJKoZIhvcNAQEB BQADggEPADCCAQoCggEBAOQe5ai68FQhTVIgpsDK+UOPIrgKzqJcW+wwLnJRp6GV V9EmifJq7wjrXeqmP1XgcNtu7cVhDx+/ONKl/8hscak54HTQrgwE6mK628RThld9 BmZoOjaWWCkoU5bH7ZIYgrKF1tAO5uTAmVJB9v7DQQvKERwjQ10ZbFOW6v8j2gDL esZQbFIC7f/viDXLsPq8dUZuyyb9BXrpEJpXpFDi/wzCV3C1wmtOUrU27xz4gBzi 3o9O6U4QmaF91xxaTk0Ot+/RLI70mR7TYa+u6q7UW/KK9q1+8LeTVs1x24VA5csx HCAQf+xvMoKlocmUxCDBYkTFkmtyhmGRN52XucHgu0kCAwEAAaMqMCgwDgYDVR0P AQH/BAQDAgWgMBYGA1UdJQEB/wQMMAoGCCsGAQUFBwMCMA0GCSqGSIb3DQEBCwUA A4IBAQAyrArH7+IyHTyEOrv/kZr3s3h4HWczSVeiO9qWD03/fVew84J524DiSBK4 mtAy3V/hqXrzrQEbsfyT7ZhQ6EqB/W0flpVYbku10cSVgoeSfjgBJLqgJRZKFonv OQPjTf9HEDo5A1bQdnUF1y6SwdFaY16lH9mZ5B8AI57mduSg90c6Ao1GvtbAciNk W8y4OTQp4drh18hpHegrgTIbuoWwgy8V4MX6W39XhkCUNhrQUUJk3mEfbC/yqfIG YNds0NRI3QCTJCUbuXvDrLEn4iqRfbzq5cbulQBxBCUtLZFFjKE4M42fJh6D6oRR yZSx4Ac3c+xYqTCjf0UdcUGxaxF/ -----END CERTIFICATE----- """ print(try? importCertificatePEM(benjyCertificatePEM)) If you run this it prints: Optional(<cert(0x11e304c10) s: Benjy i: MouseCA>) Import a Private Key To import a PEM-base RSA private key, extract the data from the PEM and call SecKeyCreateWithData: /// Import an 2048-bit RSA private key in PEM format. /// /// Don’t use this code if: /// /// * If you can switch to an EC key. EC keys are generally better and, for /// this specific case, there’s support for importing them in Apple CryptoKit. /// /// * You can switch to using a PKCS#12. In that case, use the system’s /// `SecPKCS12Import` routine instead. /// /// - important: See ``dataFromPEM(_:_:_:)`` for some important limitations. func importRSA2048PrivateKeyPEM(_ pem: String) throws -> SecKey { // Most private key PEMs are in PKCS#8 format. There’s no way to import // that directly. Instead you need to strip the header to get to the // `RSAPrivateKey` data structure encapsulated within the PKCS#8. Doing that // in the general case is hard. In the specific case of an 2048-bit RSA // key, the following hack works. let rsaPrefix: [UInt8] = [ 0x30, 0x82, 0x04, 0xBE, 0x02, 0x01, 0x00, 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00, 0x04, 0x82, 0x04, 0xA8, ] guard let pkcs8 = dataFromPEM(pem, "-----BEGIN PRIVATE KEY-----", "-----END PRIVATE KEY-----"), pkcs8.starts(with: rsaPrefix) else { throw NSError(domain: NSOSStatusErrorDomain, code: Int(errSecParam), userInfo: nil) } let rsaPrivateKey = pkcs8.dropFirst(rsaPrefix.count) return try secCall { SecKeyCreateWithData(rsaPrivateKey as NSData, [ kSecAttrKeyType: kSecAttrKeyTypeRSA, kSecAttrKeyClass: kSecAttrKeyClassPrivate, ] as NSDictionary, $0) } } IMPORTANT This code only works with 2048-bit RSA private keys. The comments explain more about that limitation. Here’s an example that shows this in action: let benjyPrivateKeyPEM = """ -----BEGIN PRIVATE KEY----- MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDkHuWouvBUIU1S IKbAyvlDjyK4Cs6iXFvsMC5yUaehlVfRJonyau8I613qpj9V4HDbbu3FYQ8fvzjS pf/IbHGpOeB00K4MBOpiutvEU4ZXfQZmaDo2llgpKFOWx+2SGIKyhdbQDubkwJlS Qfb+w0ELyhEcI0NdGWxTlur/I9oAy3rGUGxSAu3/74g1y7D6vHVGbssm/QV66RCa V6RQ4v8MwldwtcJrTlK1Nu8c+IAc4t6PTulOEJmhfdccWk5NDrfv0SyO9Jke02Gv ruqu1FvyivatfvC3k1bNcduFQOXLMRwgEH/sbzKCpaHJlMQgwWJExZJrcoZhkTed l7nB4LtJAgMBAAECggEBAKOPF6ED776SZgrliEog/dmXrhABB6jXybytyw+CRkuP dXhrRmr+isZ9Y0gTzMN4+dILVgW4EozzoP0/sgZ04oWwDqQS30eU2qzRRzMbo+3k oYsZXeu3nhxcYppwXIDsfAEd/ygMFzaadRPKYhrFykR2rA/dpLYCvW2tfm5SuULp RxnKykFlVi8yVT64AovVm0XGOy/QTO5BBbUdftvZY9QCjGn/IEL8QFEz0rxZsb2L s0HgVMUcB1My38RksZQRKLMWCtqLqWnez3oCnPka+dxFQj5RU//vNtRoVh1ExbmW txHz48v00AKQvaudC4ujIspZlY8+UPdYQT0TNjhsfoUCgYEA+7yEvyCgRtYwUNm6 jHTg67LoSldHwENOry63qGZp3rCkWBkPXle7ulgRtuw+e11g4MoMMAgkIGyIGB/Z 6YvnQGmJCTMw+HHIyw3k/OvL1iz4DM+QlxDuD79Zu2j2UIL4maDG0ZDskiJujVAf sFOy4r36TvYedmd7qgh9pgpsFl8CgYEA5/v8PZDs2I1wSDGllGfTr6aeQcxvw98I p8l/8EV/lYpdKQMFndeFZI+dnJCcTeBbeXMmPNTAdL5gOTwDReXamIAdr93k7/x6 iKMHzBrpQZUMEhepSd8zdR1+vLvyszvUU6lvNXcfjwbu7gJQkwbA6kSoXRN+C1Cv i5/w66t0f1cCgYBt02FWwTUrsmaB33uzq4o1SmhthoaXKsY5R3h4z7WAojAQ/13l GwGb2rBfzdG0oJiTeZK3odWhD7iQTdUUPyU0xNY0XVEQExQ3AmjUr0rOte/CJww9 2/UAicrsKG7N0VYEMFCNPVz4pGz22e35T4rLwXZi3J2NqrgZBntK5WEioQKBgEyx L4ii+sn0qGQVlankUUVGjhcuoNxeRZxCrzsdnrovTfEbAKZX88908yQpYqMUQul5 ufBuXVm6/lCtmF9pR8UWxbm4X9E+5Lt7Oj6tvuNhhOYOUHcNhRN4tsdqUygR5XXr E8rXIOXF4wNoXH7ewrQwEoECyq6u8/ny3FDtE8xtAoGBALNFxRGikbQMXhUXj7FA lLwWlNydCxCc7/YwlHfmekDaJRv59+z7SWAR15azhbjqS9oXWJUQ9uvpKF75opE7 MT0GzblkKAYu/3uhTENCjQg+9RFfu5w37E5RTWHD2hANV0YqXUlmH3d+f5uO0xN7 7bpqwYuYzSv1hBfU/yprDco6 -----END PRIVATE KEY----- """ print(try? importRSA2048PrivateKeyPEM(benjyPrivateKeyPEM)) If you run this it prints: Optional(<SecKeyRef algorithm id: 1, key type: RSAPrivateKey, version: 4, 2048 bits (block size: 256), addr: 0x600000c5ce50>) Form a Digital Identity There are two common ways to form a digital identity: SecPKCSImport SecItemCopyMatching SecPKCSImport is the most flexible because it gives you an in-memory digital identity. You can then choose to add it to the keychain or not. However, it requires a PKCS#12 as input. If you’re starting out with separate private key and certificate PEMs, you have to use SecItemCopyMatching. Note macOS also has SecIdentityCreateWithCertificate, but it has some seriously limitations. First, it’s only available on macOS. Second, it requires the key to be in the keychain. If you’re going to add the key to the keychain anyway, you might as well use SecItemCopyMatching. To form a digital identity from a separate private key and certificate: Add the certificate to the keychain. Add the private key to the keychain. Call SecItemCopyMatching to get back a digital identity. Here’s an example of that in action: /// Imports a digital identity composed of separate certificate and private key PEMs. /// /// - important: See ``dataFromPEM(_:_:_:)`` for some important limitations. /// See ``importRSA2048PrivateKeyPEM(_:)`` for alternative strategies that are /// much easier to deploy. func addRSA2048DigitalIdentityPEMToKeychain(certificate: String, privateKey: String) throws -> SecIdentity { // First import the certificate and private key. This has the advantage in // that it triggers an early failure if the data is in the wrong format. let certificate = try importCertificatePEM(certificate) let privateKey = try importRSA2048PrivateKeyPEM(privateKey) // Check that the private key matches the public key in the certificate. If // not, someone has given you bogus credentials. let certificatePublicKey = try secCall { SecCertificateCopyKey(certificate) } let publicKey = try secCall { SecKeyCopyPublicKey(privateKey) } guard CFEqual(certificatePublicKey, publicKey) else { throw NSError(domain: NSOSStatusErrorDomain, code: Int(errSecPublicKeyInconsistent)) } // Add the certificate first. If that fails — and the most likely error is // `errSecDuplicateItem` — we want to stop immediately. try secCall { SecItemAdd([ kSecValueRef: certificate, ] as NSDictionary, nil) } // The add the private key. do { try secCall { SecItemAdd([ kSecValueRef: privateKey, ] as NSDictionary, nil) } } catch let error as NSError { // We ignore a `errSecDuplicateItem` error when adding the key. It’s // possible to have multiple digital identities that share the same key, // so if you try to add the key and it’s already in the keychain then // that’s fine. guard error.domain == NSOSStatusErrorDomain, error.code == errSecDuplicateItem else { throw error } } // Finally, search for the resulting identity. // // I originally tried querying for the identity based on the certificate’s // attributes — the ones that contribute to uniqueness, namely // `kSecAttrCertificateType`, `kSecAttrIssuer`, and `kSecAttrSerialNumber` — // but that failed for reasons I don't fully understand (r. 144152660). So // now I get all digital identities and find the one with our certificate. let identities = try secCall { SecItemCopyMatching([ kSecClass: kSecClassIdentity, kSecMatchLimit: kSecMatchLimitAll, kSecReturnRef: true, ] as NSDictionary, $0) } as! [SecIdentity] let identityQ = try identities.first { i in try secCall { SecIdentityCopyCertificate(i, $0) } == certificate } return try secCall(Int(errSecItemNotFound)) { identityQ } } IMPORTANT This code is quite subtle. Read the comments for an explanation as to why it works the way it does. Further reading For more information about the APIs and techniques used above, see: Importing Cryptographic Keys On Cryptographic Keys Formats SecItem: Fundamentals SecItem: Pitfalls and Best Practices Calling Security Framework from Swift TN3137 On Mac keychain APIs and implementations Finally, for links to documentation and other resources, see Security Resources. Revision History 2025-02-13 Added code to check for mismatched private key and certificate. 2025-02-04 First posted.
0
0
581
Feb ’25
Clarification requested on Secure Enclave key usage across apps with shared keychain access group
During internal testing, we observed the following behavior and would appreciate clarification on whether it is expected and supported in production environments. When generating an elliptic-curve cryptographic key pair using "kSecAttrTokenIDSecureEnclave", and explicitly specifying a "kSecAttrAccessGroup", we found that cryptographic operations (specifically encryption and decryption) could be successfully performed using this key pair from two distinct applications. Both applications had the Keychain Sharing capability enabled and were signed with the same provisioning profile identity. Given the documented security properties of Secure Enclave, backed keys, namely that private key material is protected by hardware and access is strictly constrained by design, we would like to confirm whether the ability for multiple applications (sharing the same keychain access group and signing identity) to perform cryptographic operations with the same Secure Enclave–backed key is expected behavior on iOS. Specifically, we are seeking confirmation on: Whether this behavior is intentional and supported in production. Whether the Secure Enclave enforces access control primarily at the application-identifier (App ID) level rather than the individual app bundle level in this scenario. Whether there are any documented limitations or guarantees regarding cross-application usage of Secure Enclave keys when keychain sharing is configured. Any guidance or references to official documentation clarifying this behavior would be greatly appreciated.
0
2
171
3d
Feature Request: Allow Foundation Models in MessageFilter Extensions
I’d like to submit a feature request regarding the availability of Foundation Models in MessageFilter extensions. Background MessageFilter extensions play a critical role in protecting users from spam, phishing, and unwanted messages. With the introduction of Foundation Models and Apple Intelligence, Apple has provided powerful on-device natural language understanding capabilities that are highly aligned with the goals of MessageFilter. However, Foundation Models are currently unavailable in MessageFilter extensions. Why Foundation Models Are a Great Fit for MessageFilter Message filtering is fundamentally a natural language classification problem. Foundation Models would significantly improve: Detection of phishing and scam messages Classification of promotional vs transactional content Understanding intent, tone, and semantic context beyond keyword matching Adaptation to evolving scam patterns without server-side processing All of this can be done fully on-device, preserving user privacy and aligning with Apple’s privacy-first design principles. Current Limitations Today, MessageFilter extensions are limited to relatively simple heuristics or lightweight models. This often results in: Higher false positives Lower recall for sophisticated scam messages Increased development complexity to compensate for limited NLP capabilities Request Could Apple consider one of the following: Allowing Foundation Models to be used directly within MessageFilter extensions Providing a constrained or optimized Foundation Model API specifically designed for MessageFilter Enabling a supported mechanism for MessageFilter extensions to delegate inference to the containing app using Foundation Models Even limited access (e.g. short text only, strict execution limits) would be extremely valuable. Closing Foundation Models have the potential to significantly raise the quality and effectiveness of message filtering on Apple platforms while maintaining strong privacy guarantees. Supporting them in MessageFilter extensions would be a major improvement for both developers and users. Thank you for your consideration and for continuing to invest in on-device intelligence.
0
0
50
5d