Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.

All subtopics
Posts under Machine Learning & AI topic

Post

Replies

Boosts

Views

Activity

Using RAG on local documents from Foundation Model
I am watching a few WWDC sessions on Foundation Model and its usage and it looks pretty cool. I was wondering if it is possible to perform RAG on the user documents on the devices and entuallly on iCloud... Let's say I have a lot of pages documents about me and I want the Foundation model to access those information on the documents to answer questions about me that can be retrieved from the documents. How can this be done ? Thanks
4
2
452
Jun ’25
Model Rate Limits?
Trying the Foundation Model framework and when I try to run several sessions in a loop, I'm getting a thrown error that I'm hitting a rate limit. Are these rate limits documented? What's the best practice here? I'm trying to run the models against new content downloaded from a web service where I might get ~200 items in a given download. They're relatively small but there can be that many that want to be processed in a loop.
4
1
575
Jun ’25
Avoid hallucinations and information from trainning data
Hi For certain tasks, such as qualitative analysis or tagging, it is advisable to provide the AI with the option to respond with a joker / wild card answer when it encounters difficulties in tagging or scoring. For instance, you can include this slot in the prompt as follows: output must be "not data to score" when there isn't information to score. In the absence of these types of slots, AI trends to provide a solution even when there is insufficient information. Foundations Models are told to be prompted with simple prompts. I wonder: Is recommended keep this slot though adds verbose complexity? Is the best place the comment of a guided attribute? other tips? Another use case is when you want the AI to be tied to the information provided in the prompt and not take information from its data set. What is the best approach to this purpose? Thanks in advance for any suggestion.
4
0
815
Oct ’25
All generations in #Playground macro are throwing "unsafe" Generation Errors
I'm using Xcode 26 Beta 5 and get errors on any generation I try, however harmless, when wrapped in the #Playground macro. #Playground { let session = LanguageModelSession() let topic = "pandas" let prompt = "Write a safe and respectful story about (topic)." let response = try await session.respond(to: prompt) Not seeing any issues on simulator or device. Anyone else seeing this or have any ideas? Thanks for any help! Version 26.0 beta 5 (17A5295f) macOS 26.0 Beta (25A5316i)
4
0
153
Aug ’25
LanguageModelStream and collecting the final output
I have a Generable type with many elements. I am using a stream() to incrementally process the output (Generable.PartiallyGenerated?) content. At the end, I want to pass the final version (not partially generated) to another function. I cannot seem to find a good way to convert from a MyGenerable.PartiallyGenerated to a MyGenerable. Am I missing some functionality in the APIs?
4
0
588
Jul ’25
InferenceError with Apple Foundation Model – Context Length Exceeded on macOS 26.0 Beta
Hello Team, I'm currently working on a proof of concept using Apple's Foundation Model for a RAG-based chat system on my MacBook Pro with the M1 Max chip. Environment details: macOS: 26.0 Beta Xcode: 26.0 beta 2 (17A5241o) Target platform: iPad (as the iPhone simulator does not support Foundation models) While testing, even with very small input prompts to the LLM, I intermittently encounter the following error: InferenceError::inference-Failed::Failed to run inference: Context length of 4096 was exceeded during singleExtend. Has anyone else experienced this issue? Are there known limitations or workarounds for context length handling in this setup? Any insights would be appreciated. Thank you!
3
0
286
Jul ’25
Run Time Issues with Swift/Core ML
Hello! I have a swift program that tracks the location of a ball (through the back camera). It seems to be working fine, but the only issue is the run time, particularly my concatenate, normalize, and argmax functions, which are meant to be a 1 to 1 copy of the PyTorch argmax function and the following python lines: imgs = np.concatenate((img, img_prev, img_preprev), axis=2) imgs = imgs.astype(np.float32)/255.0 imgs = np.rollaxis(imgs, 2, 0) inp = np.expand_dims(imgs, axis=0) # used to pass into model However, I need my program to run in real time and in an ideal world, I want it to run way under real time. Below is a run down of the run times that result from my code: Starting model inference Setup took: 0.0 seconds Resize took: 0.03741896152496338 seconds Concatenation took: 0.3359949588775635 seconds Normalization took: 0.9906361103057861 seconds Model prediction took: 0.3425499200820923 seconds Argmax took: 28.17007803916931 seconds Postprocess took: 0.054128050804138184 seconds Model inference took 29.934185028076172 seconds Here are the concatenateBuffers, normalizeBuffers, and argmax functions that I use: func concatenateBuffers(_ buffers: [CVPixelBuffer?]) -> CVPixelBuffer? { guard buffers.count == 3, let first = buffers[0] else { return nil } let width = CVPixelBufferGetWidth(first) let height = CVPixelBufferGetHeight(first) let targetChannels = 9 var concatenated: CVPixelBuffer? let attrs = [kCVPixelBufferCGImageCompatibilityKey: kCFBooleanTrue] as CFDictionary CVPixelBufferCreate(kCFAllocatorDefault, width, height, kCVPixelFormatType_32BGRA, attrs, &concatenated) guard let output = concatenated else { return nil } CVPixelBufferLockBaseAddress(output, []) defer { CVPixelBufferUnlockBaseAddress(output, []) } guard let outputData = CVPixelBufferGetBaseAddress(output) else { return nil } let outputPtr = UnsafeMutablePointer<UInt8>(OpaquePointer(outputData)) // Lock all input buffers at once buffers.forEach { buffer in guard let buffer = buffer else { return } CVPixelBufferLockBaseAddress(buffer, .readOnly) } defer { buffers.forEach { CVPixelBufferUnlockBaseAddress($0!, .readOnly) } } // Process each input buffer for (frameIdx, buffer) in buffers.enumerated() { guard let buffer = buffer, let inputData = CVPixelBufferGetBaseAddress(buffer) else { continue } let inputPtr = UnsafePointer<UInt8>(OpaquePointer(inputData)) let bytesPerRow = CVPixelBufferGetBytesPerRow(buffer) let totalPixels = width * height // Process all pixels in one go for this frame for i in 0..<totalPixels { let y = i / width let x = i % width let inputOffset = y * bytesPerRow + x * 4 let outputOffset = i * targetChannels + frameIdx * 3 // BGR order to match numpy outputPtr[outputOffset] = inputPtr[inputOffset + 2] // B outputPtr[outputOffset + 1] = inputPtr[inputOffset + 1] // G outputPtr[outputOffset + 2] = inputPtr[inputOffset] // R } } return output } func normalizeBuffer(_ buffer: CVPixelBuffer?) -> MLMultiArray? { guard let input = buffer else { return nil } let width = CVPixelBufferGetWidth(input) let height = CVPixelBufferGetHeight(input) let channels = 9 CVPixelBufferLockBaseAddress(input, .readOnly) defer { CVPixelBufferUnlockBaseAddress(input, .readOnly) } guard let inputData = CVPixelBufferGetBaseAddress(input) else { return nil } let shape = [1, NSNumber(value: channels), NSNumber(value: height), NSNumber(value: width)] guard let output = try? MLMultiArray(shape: shape, dataType: .float32) else { return nil } let inputPtr = inputData.assumingMemoryBound(to: UInt8.self) let bytesPerRow = CVPixelBufferGetBytesPerRow(input) let ptr = UnsafeMutablePointer<Float>(OpaquePointer(output.dataPointer)) let totalSize = width * height for c in 0..<channels { for idx in 0..<totalSize { let h = idx / width let w = idx % width let inputIdx = h * bytesPerRow + w * channels + c ptr[c * totalSize + idx] = Float(inputPtr[inputIdx]) / 255.0 } } return output } func argmax(_ array: MLMultiArray) -> MLMultiArray? { let shape = array.shape.map { $0.intValue } guard shape.count == 3, shape[0] == 1, shape[1] == 256, shape[2] == 230400 else { return nil } guard let output = try? MLMultiArray(shape: [1, NSNumber(value: 230400)], dataType: .int32) else { return nil } let ptr = UnsafePointer<Float>(OpaquePointer(array.dataPointer)) let outputPtr = UnsafeMutablePointer<Int32>(OpaquePointer(output.dataPointer)) let channelSize = 230400 for pos in 0..<230400 { var maxValue = -Float.infinity var maxIndex: Int32 = 0 for channel in 0..<256 { let value = ptr[channel * channelSize + pos] if value > maxValue { maxValue = value maxIndex = Int32(channel) } } outputPtr[pos] = maxIndex } return output } Are there any glaring areas of inefficiencies that can be reduced to allow for under real time processing whilst following the same logic as found in the python code exactly? Would using Obj-C speed things up for some reason? Are there any tools I can use so I don't have to write these functions myself? Additionally, in the classes init, function, I tried to check the compute units being used since I feel 0.34 seconds for a singular model prediction is also far too long, but no print statements are showing for some reason: init() { guard let loadedModel = try? BallTrackerModel() else { fatalError("Could not load model") } let config = MLModelConfiguration() config.computeUnits = .all guard let configuredModel = try? BallTrackerModel(configuration: config) else { fatalError("Could not configure model") } self.model = configuredModel print("model loaded with compute units \(config.computeUnits.rawValue)") } Thanks!
3
0
794
Feb ’25
Core ML .mlpackage not found in bundle despite target membership and Copy Bundle Resources
Hi everyone, I’m working on an iOS app that uses a Core ML model to run live image recognition. I’ve run into a persistent issue with the mlpackage not being turned into a swift class. This following error is in the code, and in carDetection.mlpackage, it says that model class has not been generated yet. The error in the code is as follows: What I’ve tried: Verified Target Membership is checked for carDetectionModel.mlpackage Confirmed the file is listed under Copy Bundle Resources (and removed from Compile Sources) Cleaned the build folder (Shift + Cmd + K) and rebuilt Renamed and re-added the .mlpackage file Restarted Xcode and re-added the file Logged bundle contents at runtime, but the .mlpackage still doesn’t appear The mlpackage is in Copy bundle resources, and is not in the compile sources. I just don't know why a swift class is not being generated for the mlpackage. Could someone please give me some guidance on what to do to resolve this issue? Sorry if my error is a bit naive, I'm pretty new to iOS app development
3
0
524
Dec ’25
Foundation Model Always modelNotReady
I'm testing Foundation Model on my iPad Pro (5th gen) iOS 26. Up until late this morning, I can no longer load the SystemLanguageModel.default. I'm not doing anything interesting, something as basic as this is only going to unavailable, specifically I get unavailable reason: modelNotReady. let model = SystemLanguageModel.default ... switch model.availability { case .available: print("LM available") case .unavailable(let reason): print("unavailable reason: ", String(describing: reason)) } I also ran the FoundationModelsTripPlanner app, same thing. It was working yesterday, I have not modified that project either. Why is the Model not ready? How do I fix this? Yes, I tried restarting both my laptop and iPad, no luck.
3
0
278
Jul ’25
macOS 26 Beta 2 - Foundation Models - Symbol not found
It seems like there was an undocumented change that made Transcript.init(entries: [Transcript.Entry] initializer private, which broke my application, which relies on (manual) reconstruction of Transcript entries. Worked fine on beta 1, on beta 2 there's this error dyld[72381]: Symbol not found: _$s16FoundationModels10TranscriptV7entriesACSayAC5EntryOG_tcfC Referenced from: <44342398-591C-3850-9889-87C9458E1440> /Users/mika/experiments/apple-on-device-ai/fm Expected in: <66A793F6-CB22-3D1D-A560-D1BD5B109B0D> /System/Library/Frameworks/FoundationModels.framework/Versions/A/FoundationModels Is this a part of an API transition, if so - Apple, please update your documentation
3
0
358
Jun ’25
CoreML MLModelErrorModelDecryption error
Somehow I'm not able to decrypt our ml models on my machine. It does not matter: If I clean the build / delete the build folder If it's a local build or a build downloaded from our build server I log in as a different user I reboot my system (15.4.1 (24E263) I use a different network Re-generate the encryption keys. I'm the only one in my team confronted with this issue. Using the encrypted models works fine for everyone else. As soon as our application tries to load the bundled ml model the following error is logged and returned: Could not create persistent key blob for CD49E04F-1A42-4FBE-BFC1-2576B89EC233 : error=Error Domain=com.apple.CoreML Code=9 "Failed to generate key request for CD49E04F-1A42-4FBE-BFC1-2576B89EC233 with error: -42908" Error code 9 points to a decryption issue, but offers no useful pointers and suggests that some sort of network request needs to be made in order to decrypt our models. /*! Core ML throws/returns this error when the framework encounters an error in the model decryption subsystem. The typical cause for this error is in the key server configuration and the client application cannot do much about it. For example, a model loading method will throw/return the error when it uses incorrect model decryption key. */ MLModelErrorModelDecryption API_AVAILABLE(macos(11.0), ios(14.0), watchos(7.0), tvos(14.0)) = 9, I could not find a reference to error '-42908' anywhere. ChatGPT just lied to me, as usual... How do can I resolve this or diagnose this further? Thanks.
3
0
223
May ’25
LanguageModelSession always returns very lengthy responses
No matter what, the LanguageModelSession always returns very lengthy / verbose responses. I set the maximumResponseTokens option to various small numbers but it doesn't appear to have any effect. I've even used this instructions format to keep responses between 3-8 words but it returns multiple paragraphs. Is there a way to manage LLM response length? Thanks.
3
0
262
Sep ’25
Selecting GPU for TensorFlow-Metal on Mac Pro (2013) with v0.8.0
Hi everyone, I'm a Mac enthusiast experimenting with tensorflow-metal on my Mac Pro (2013). My question is about GPU selection in tensorflow-metal (v0.8.0), which still supports Intel-based Macs, including my machine. I've noticed that when running TensorFlow with Metal, it automatically selects a GPU, regardless of what I specify using device indices like "gpu:0", "gpu:1", or "gpu:2". I'm wondering if there's a way to manually specify which GPU should be used via an environment variable or another method. For reference, I’ve tried the example from TensorFlow’s guide on multi-GPU selection: https://www.tensorflow.org/guide/gpu#using_a_single_gpu_on_a_multi-gpu_system My goal is to explore performance optimizations by using MirroredStrategy in TensorFlow to leverage multiple GPUs: https://www.tensorflow.org/guide/distributed_training#mirroredstrategy Interestingly, I discovered that the metalcompute Python library (https://pypi.org/project/metalcompute/) allows to utilize manually selected GPUs on my system, allowing for proper multi-GPU computations. This makes me wonder: Is there a hidden environment variable or setting that allows manual GPU selection in tensorflow-metal? Has anyone successfully used MirroredStrategy on multiple GPUs with tensorflow-metal? Would a bridge between metalcompute and tensorflow-metal be necessary for this use case, or is there a more direct approach? I’d love to hear if anyone else has experimented with this or has insights on getting finer control over GPU selection. Any thoughts or suggestions would be greatly appreciated! Thanks!
3
0
263
Mar ’25
Broken compatibility in tensorflow-metal with tensorflow 2.18
Issue type: Bug TensorFlow metal version: 1.1.1 TensorFlow version: 2.18 OS platform and distribution: MacOS 15.2 Python version: 3.11.11 GPU model and memory: Apple M2 Max GPU 38-cores Standalone code to reproduce the issue: import tensorflow as tf if __name__ == '__main__': gpus = tf.config.experimental.list_physical_devices('GPU') print(gpus) Current behavior Apple silicone GPU with tensorflow-metal==1.1.0 and python 3.11 works fine with tensorboard==2.17.0 This is normal output: /Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/bin/python /Users/mspanchenko/VSCode/cryptoNN/ml/core_second_window/test_tensorflow_gpus.py [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')] Process finished with exit code 0 But if I upgrade tensorflow to 2.18 I'll have error: /Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/bin/python /Users/mspanchenko/VSCode/cryptoNN/ml/core_second_window/test_tensorflow_gpus.py Traceback (most recent call last): File "/Users/mspanchenko/VSCode/cryptoNN/ml/core_second_window/test_tensorflow_gpus.py", line 1, in <module> import tensorflow as tf File "/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow/__init__.py", line 437, in <module> _ll.load_library(_plugin_dir) File "/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library py_tf.TF_LoadLibrary(lib) tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Symbol not found: __ZN3tsl8internal10LogMessageC1EPKcii Referenced from: <D2EF42E3-3A7F-39DD-9982-FB6BCDC2853C> /Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow-plugins/libmetal_plugin.dylib Expected in: <2814A58E-D752-317B-8040-131217E2F9AA> /Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow/python/_pywrap_tensorflow_internal.so Process finished with exit code 1
3
3
1.7k
Feb ’25
lldb issues with Vision
HI, I've been modifying the Camera sample app found here: https://developer.apple.com/tutorials/sample-apps/capturingphotos-camerapreview ... in the processpreview images, I am calling in to the Vision APis to either detect a person or object, then I'm using the segmentation mask to extract the person and composite them onto a different background with some other filters. I am using coreimage to filter the CIImages, and converting and displaying as a SwiftUI Image. When running on my IPhone, it works fine. When running on my Iphone with the debugger, it crashes within a few seconds... Attached is a screenshot. At the top is an EXC_BAD_ACCESS in libRPAC.dylib`std::__1::__hash_table<std::__1::__hash_value_type<long, qos_info_t>, std::__1::__unordered_map_hasher<long, std::__1::__hash_value_type<long, qos_info_t>, std::__1::hash, std::__1::equal_to, true>, std::__1::__unordered_map_equal<long, std::__1::__hash_value_type<long, qos_info_t>, std::__1::equal_to, std::__1::hash, true>, std::__1::allocator<std::__1::__hash_value_type<long, qos_info_t>>>::__emplace_unique_key_args<long, std::__1::piecewise_construct_t const&, std::__1::tuple<long const&>, std::__1::tuple<>>: This was working fine a couple of days ago.. Not sure why it's popping up now. Am I correct in interpreting this as an LLDB issue? How do I fix it?
3
1
149
May ’25
tensorflow-metal error
I'm using python 3.9.6, tensorflow 2.20.0, tensorflow-metal 1.2.0, and when I try to run import tensorflow as tf It gives Traceback (most recent call last): File "/Users/haoduoyu/Code/demo.py", line 1, in <module> import tensorflow as tf File "/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow/__init__.py", line 438, in <module> _ll.load_library(_plugin_dir) File "/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library py_tf.TF_LoadLibrary(lib) tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Library not loaded: @rpath/_pywrap_tensorflow_internal.so Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/libmetal_plugin.dylib Reason: tried: '/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file) As long as I uninstall tensorflow-metal, nothing goes wrong. How can I fix this problem?
3
3
950
3d
FoundationModels coding
I am writing an app that parses text and conducts some actions. I don't want to give too much away ;) However, I am having a huge problem with token sizes. LanguageModelSession will of course give me the on device model 4096 available, but when you go over 4096, my code doesn't seem to be falling back to PCC, or even the system configured ChatGPT. Can anyone assist me with this? For some reason, after reading the docs, it's very unclear how this transition between the three takes place.
3
0
598
4d
Crash inside of Vision predictWithCVPixelBuffer - Crashed: com.apple.VN.detectorSyncTasksQueue.VNCoreMLTransformer
Hello, We have been encountering a persistent crash in our application, which is deployed exclusively on iPad devices. The crash occurs in the following code block: let requestHandler = ImageRequestHandler(paddedImage) var request = CoreMLRequest(model: model) request.cropAndScaleAction = .scaleToFit let results = try await requestHandler.perform(request) The client using this code is wrapped inside an actor, following Swift concurrency principles. The issue has been consistently reproduced across multiple iPadOS versions, including: iPad OS - 18.4.0 iPad OS - 18.4.1 iPad OS - 18.5.0 This is the crash log - Crashed: com.apple.VN.detectorSyncTasksQueue.VNCoreMLTransformer 0 libobjc.A.dylib 0x7b98 objc_retain + 16 1 libobjc.A.dylib 0x7b98 objc_retain_x0 + 16 2 libobjc.A.dylib 0xbf18 objc_getProperty + 100 3 Vision 0x326300 -[VNCoreMLModel predictWithCVPixelBuffer:options:error:] + 148 4 Vision 0x3273b0 -[VNCoreMLTransformer processRegionOfInterest:croppedPixelBuffer:options:qosClass:warningRecorder:error:progressHandler:] + 748 5 Vision 0x2ccdcc __119-[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke_5 + 132 6 Vision 0x14600 VNExecuteBlock + 80 7 Vision 0x14580 __76+[VNDetector runSuccessReportingBlockSynchronously:detector:qosClass:error:]_block_invoke + 56 8 libdispatch.dylib 0x6c98 _dispatch_block_sync_invoke + 240 9 libdispatch.dylib 0x1b584 _dispatch_client_callout + 16 10 libdispatch.dylib 0x11728 _dispatch_lane_barrier_sync_invoke_and_complete + 56 11 libdispatch.dylib 0x7fac _dispatch_sync_block_with_privdata + 452 12 Vision 0x14110 -[VNControlledCapacityTasksQueue dispatchSyncByPreservingQueueCapacity:] + 60 13 Vision 0x13ffc +[VNDetector runSuccessReportingBlockSynchronously:detector:qosClass:error:] + 324 14 Vision 0x2ccc80 __119-[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke_4 + 336 15 Vision 0x14600 VNExecuteBlock + 80 16 Vision 0x2cc98c __119-[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke_3 + 256 17 libdispatch.dylib 0x1b584 _dispatch_client_callout + 16 18 libdispatch.dylib 0x6ab0 _dispatch_block_invoke_direct + 284 19 Vision 0x2cc454 -[VNDetector internalProcessUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:] + 632 20 Vision 0x2cd14c __111-[VNDetector processUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:]_block_invoke + 124 21 Vision 0x14600 VNExecuteBlock + 80 22 Vision 0x2ccfbc -[VNDetector processUsingQualityOfServiceClass:options:regionOfInterest:warningRecorder:error:progressHandler:] + 340 23 Vision 0x125410 __swift_memcpy112_8 + 4852 24 libswift_Concurrency.dylib 0x5c134 swift::runJobInEstablishedExecutorContext(swift::Job*) + 292 25 libswift_Concurrency.dylib 0x5d5c8 swift_job_runImpl(swift::Job*, swift::SerialExecutorRef) + 156 26 libdispatch.dylib 0x13db0 _dispatch_root_queue_drain + 364 27 libdispatch.dylib 0x1454c _dispatch_worker_thread2 + 156 28 libsystem_pthread.dylib 0x9d0 _pthread_wqthread + 232 29 libsystem_pthread.dylib 0xaac start_wqthread + 8 We found an issue similar to us - https://developer.apple.com/forums/thread/770771. But the crash logs are quite different, we believe this warrants further investigation to better understand the root cause and potential mitigation strategies. Please let us know if any additional information would help diagnose this issue.
3
0
392
Jul ’25
Selecting an output language with Foundation Models
When using Foundation Models, is it possible to ask the model to produce output in a specific language, apart from giving an instruction like "Provide answers in ." ? (I tried that and it kind of worked, but it seems fragile.) I haven't noticed an API to do so and have a use-case where the output should be in a user-selectable language that is not the current system language.
3
1
548
Jul ’25