Prioritize user privacy and data security in your app. Discuss best practices for data handling, user consent, and security measures to protect user information.

All subtopics
Posts under Privacy & Security topic

Post

Replies

Boosts

Views

Activity

My first launch and... My Apple Developer Account suddenly disappeared
Hi! I've just opened Xcode and found that I can't build my app anymore. The error was about signing. Basically, there's no team in my account. Also, I've found that all my certificates have been revoked! I created my dev account a month ago and released only one macOS app. It's SecFolder (it's not self-promotion!!!). App not even in the App Store. I planned to self-distribute it. I'm in a little shock right now since I've just launched and had my first users. And of course, my app is now gone from their Macs, screaming "malware" popup in their faces now :( Since my app is all about paranoia security, this is basically a death sentence for my project... Could someone with experience in the Apple dev ecosystem help me understand what might have gone wrong? Why might Apple think that my app is malware or something? P.S. My app is about Advanced File Access Control for macOS. It gives user complete control over which applications can access specified by user files and folders
0
0
394
Dec ’24
iPhone + Safari + Passwords violates WebAuthn spec when pubKeyCredParams doesn't contain ES256
WebAuthn Level 3 § 6.3.2 Step 2 states the authenticator must : Check if at least one of the specified combinations of PublicKeyCredentialType and cryptographic parameters in credTypesAndPubKeyAlgs is supported. If not, return an error code equivalent to "NotSupportedError" and terminate the operation. On my iPhone 15 Pro Max running iOS 18.5, Safari + Passwords does not exhibit this behavior; instead an error is not reported and an ES256 credential is created when an RP passes a non-empty sequence that does not contain {"type":"public-key","alg":-7} (e.g., [{"type":"public-key","alg":-8}]). When I use Chromium 138.0.7204.92 on my laptop running Arch Linux in conjunction with the Passwords app (connected via the "hybrid" protocol), a credential is not created and instead an error is reported per the spec.
3
0
513
Jul ’25
SmartCard Pairing with PIN for user and prompted for a Password authentication for keychain access app
During SmartCard pairing the PIN prompt enables the OK button only on user provides a PIN of 6 digits. Is there a way to submit the empty PIN in this flow, where the custom CTK is used here (the custom CTK would take care of the PIN from the custom ctk code). I was able to do an empty PIN submit once the I've paired the user successfully at login, unlock and other cli tools. Is there a way to do the same during the pairing? Once the user has successfully paired with the SmartCard authentication with PIN, I was able to see most of the authentication flows was prompting for the PIN authentication like login, unlock, CLI tools like ssh, su etc., perhaps at few apps where it is still prompted with the Password instead of PIN examples, when I tried to launch Keychain Access app or Add a user from users&groups system setting. Is this expected behaviour?
0
0
355
Feb ’25
Cannot update ASCredentialIdentityStore while device locked
Our product includes a background sync process that synchronizes credentials between devices. We need to update ASCredentialIdentityStore when credentials are changed, we have noticed that the ASCredentialIdentityStore.shared.saveCredentialIdentities() fails to run when the device is locked. Is it possible to update ASCredentialIdentityStore when the device is locked?
0
0
74
Apr ’25
APP ID's indentifier not updating
When implementing Sign In with Apple I created an App ID and a Service ID for my app. I didn't configure the Server-to-Server Notification URL properly there and token revocation didn't work. Later on I updated the url config and the name of the identifiers. However, when I Sign in with Apple in my app I still see the old identifier name in my iPhone Settings->Apple Account->Sign in with Apple. I would assume that if the name doesn't update, the configuration doesn't update either. I'm using automatic Xcode signing, I have deleted all the profiles locally, cleaned project, bumped versions, waited for a week, nothing worked. Token revocation for account deletion doesn't work properly I would assume because of the initial misconfiguration. I want to mention that this is working fine for my development build (another bundleID, AppID, ServiceID) What am I missing here?
0
0
96
Jun ’25
Ajuda com identificação de usuário Apple nome email e Firebase
E aí pessoal, tudo certo? Estou desenvolvendo um app com React Native no front-end e Node.js no back-end, usando o Firebase como banco de dados (e possivelmente para autenticação também, dependendo da solução). Preciso implementar o "Sign in with Apple" e estou com algumas dúvidas em como integrar tudo isso. A ideia é: o usuário clica no botão "Entrar com a Apple" no app (React Native), o backend (Node.js) processa a autenticação com a Apple e, em seguida, armazena as informações necessárias (nome, email, etc.) no Firebase. Se alguém já trabalhou com essa combinação (React Native, Node.js, Firebase e Sign in with Apple) e puder compartilhar alguma experiência, dicas, exemplos de código ou até mesmo um boilerplate, seria de grande ajuda!
0
0
396
Jan ’25
PSSO 2.0: is previous password expected to unlock keychain?
Wondering if others have encountered this issue with PSSO 2.0. We are observing that if, after registration, a user changes their IDP password, they may be prompted for their previous password in order to unlock the Keychain. We are trying to determine if this is expected behavior or if there is a way to avoid it. To reproduce this, the flow would be as follows: user registers with PSSO user logs out and logs back in with their IDP password user is authenticated (and not prompted for previous password) user logs out user changes their IDP password on another machine user logs in and is prompted to use their previous password to unlock the Keychain. Failure to provide the previous password nukes the Keychain, which is not an outcome we want. Any insight anyone has on this issue would be most welcome. Thanks
1
0
461
Dec ’24
Importing a PEM-based RSA Private Key and its Certificate
This post is an extension to Importing Cryptographic Keys that covers one specific common case: importing a PEM-based RSA private key and its certificate to form a digital identity. If you have questions or comments, start a new thread in Privacy & Security > General. Tag your thread with Security so that I see it. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Importing a PEM-based RSA Private Key and its Certificate I regularly see folks struggle to import an RSA private key and its corresponding certificate. Importing Cryptographic Keys outlines various options for importing keys, but in this post I want to cover one specific case, namely, a PEM-based RSA private key and its corresponding certificate. Together these form a digital identity, represented as a SecIdentity object. IMPORTANT If you can repackage your digital identity as a PKCS#12, please do. It’s easy to import that using SecPKCS12Import. If you can switch to an elliptic curve (EC) private key, please do. It’s generally better and Apple CryptoKit has direct support for importing an EC PEM. Assuming that’s not the case, let’s explore how to import a PEM-base RSA private key and its corresponding certificate to form a digital identity. Note The code below was built with Xcode 16.2 and tested on the iOS 18.2 simulator. It uses the helper routines from Calling Security Framework from Swift. This code assumes the data protection keychain. If you’re targeting macOS, add kSecUseDataProtectionKeychain to all the keychain calls. See TN3137 On Mac keychain APIs and implementations for more background to that. Unwrap the PEM To start, you need to get the data out of the PEM: /// Extracts the data from a PEM. /// /// As PEM files can contain a large range of data types, you must supply the /// expected prefix and suffix strings. For example, for a certificate these /// are `"-----BEGIN CERTIFICATE-----` and `-----END CERTIFICATE-----`. /// /// - important: This assumes the simplest possible PEM format. It does not /// handle metadata at the top of the PEM or PEMs with multiple items in them. func dataFromPEM(_ pem: String, _ expectedPrefix: String, _ expectedSuffix: String) -> Data? { let lines = pem.split(separator: "\n") guard let first = lines.first, first == expectedPrefix, let last = lines.last, last == expectedSuffix else { return nil } let base64 = lines.dropFirst().dropLast().joined() guard let data = Data(base64Encoded: base64) else { return nil } return data } IMPORTANT Read the doc comment to learn about some important limitations with this code. Import a Certificate When adding a digital identity to the keychain, it’s best to import the certificate and the key separately and then add them to the keychain. That makes it easier to track down problems you encounter. To import a PEM-based certificate, extract the data from the PEM and call SecCertificateCreateWithData: /// Import a certificate in PEM format. /// /// - important: See ``dataFromPEM(_:_:_:)`` for some important limitations. func importCertificatePEM(_ pem: String) throws -> SecCertificate { guard let data = dataFromPEM(pem, "-----BEGIN CERTIFICATE-----", "-----END CERTIFICATE-----"), let cert = SecCertificateCreateWithData(nil, data as NSData) else { throw NSError(domain: NSOSStatusErrorDomain, code: Int(errSecParam), userInfo: nil) } return cert } Here’s an example that shows this in action: let benjyCertificatePEM = """ -----BEGIN CERTIFICATE----- MIIC4TCCAcmgAwIBAgIBCzANBgkqhkiG9w0BAQsFADAfMRAwDgYDVQQDDAdNb3Vz ZUNBMQswCQYDVQQGEwJHQjAeFw0xOTA5MzAxNDI0NDFaFw0yOTA5MjcxNDI0NDFa MB0xDjAMBgNVBAMMBUJlbmp5MQswCQYDVQQGEwJHQjCCASIwDQYJKoZIhvcNAQEB BQADggEPADCCAQoCggEBAOQe5ai68FQhTVIgpsDK+UOPIrgKzqJcW+wwLnJRp6GV V9EmifJq7wjrXeqmP1XgcNtu7cVhDx+/ONKl/8hscak54HTQrgwE6mK628RThld9 BmZoOjaWWCkoU5bH7ZIYgrKF1tAO5uTAmVJB9v7DQQvKERwjQ10ZbFOW6v8j2gDL esZQbFIC7f/viDXLsPq8dUZuyyb9BXrpEJpXpFDi/wzCV3C1wmtOUrU27xz4gBzi 3o9O6U4QmaF91xxaTk0Ot+/RLI70mR7TYa+u6q7UW/KK9q1+8LeTVs1x24VA5csx HCAQf+xvMoKlocmUxCDBYkTFkmtyhmGRN52XucHgu0kCAwEAAaMqMCgwDgYDVR0P AQH/BAQDAgWgMBYGA1UdJQEB/wQMMAoGCCsGAQUFBwMCMA0GCSqGSIb3DQEBCwUA A4IBAQAyrArH7+IyHTyEOrv/kZr3s3h4HWczSVeiO9qWD03/fVew84J524DiSBK4 mtAy3V/hqXrzrQEbsfyT7ZhQ6EqB/W0flpVYbku10cSVgoeSfjgBJLqgJRZKFonv OQPjTf9HEDo5A1bQdnUF1y6SwdFaY16lH9mZ5B8AI57mduSg90c6Ao1GvtbAciNk W8y4OTQp4drh18hpHegrgTIbuoWwgy8V4MX6W39XhkCUNhrQUUJk3mEfbC/yqfIG YNds0NRI3QCTJCUbuXvDrLEn4iqRfbzq5cbulQBxBCUtLZFFjKE4M42fJh6D6oRR yZSx4Ac3c+xYqTCjf0UdcUGxaxF/ -----END CERTIFICATE----- """ print(try? importCertificatePEM(benjyCertificatePEM)) If you run this it prints: Optional(<cert(0x11e304c10) s: Benjy i: MouseCA>) Import a Private Key To import a PEM-base RSA private key, extract the data from the PEM and call SecKeyCreateWithData: /// Import an 2048-bit RSA private key in PEM format. /// /// Don’t use this code if: /// /// * If you can switch to an EC key. EC keys are generally better and, for /// this specific case, there’s support for importing them in Apple CryptoKit. /// /// * You can switch to using a PKCS#12. In that case, use the system’s /// `SecPKCS12Import` routine instead. /// /// - important: See ``dataFromPEM(_:_:_:)`` for some important limitations. func importRSA2048PrivateKeyPEM(_ pem: String) throws -> SecKey { // Most private key PEMs are in PKCS#8 format. There’s no way to import // that directly. Instead you need to strip the header to get to the // `RSAPrivateKey` data structure encapsulated within the PKCS#8. Doing that // in the general case is hard. In the specific case of an 2048-bit RSA // key, the following hack works. let rsaPrefix: [UInt8] = [ 0x30, 0x82, 0x04, 0xBE, 0x02, 0x01, 0x00, 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00, 0x04, 0x82, 0x04, 0xA8, ] guard let pkcs8 = dataFromPEM(pem, "-----BEGIN PRIVATE KEY-----", "-----END PRIVATE KEY-----"), pkcs8.starts(with: rsaPrefix) else { throw NSError(domain: NSOSStatusErrorDomain, code: Int(errSecParam), userInfo: nil) } let rsaPrivateKey = pkcs8.dropFirst(rsaPrefix.count) return try secCall { SecKeyCreateWithData(rsaPrivateKey as NSData, [ kSecAttrKeyType: kSecAttrKeyTypeRSA, kSecAttrKeyClass: kSecAttrKeyClassPrivate, ] as NSDictionary, $0) } } IMPORTANT This code only works with 2048-bit RSA private keys. The comments explain more about that limitation. Here’s an example that shows this in action: let benjyPrivateKeyPEM = """ -----BEGIN PRIVATE KEY----- MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDkHuWouvBUIU1S IKbAyvlDjyK4Cs6iXFvsMC5yUaehlVfRJonyau8I613qpj9V4HDbbu3FYQ8fvzjS pf/IbHGpOeB00K4MBOpiutvEU4ZXfQZmaDo2llgpKFOWx+2SGIKyhdbQDubkwJlS Qfb+w0ELyhEcI0NdGWxTlur/I9oAy3rGUGxSAu3/74g1y7D6vHVGbssm/QV66RCa V6RQ4v8MwldwtcJrTlK1Nu8c+IAc4t6PTulOEJmhfdccWk5NDrfv0SyO9Jke02Gv ruqu1FvyivatfvC3k1bNcduFQOXLMRwgEH/sbzKCpaHJlMQgwWJExZJrcoZhkTed l7nB4LtJAgMBAAECggEBAKOPF6ED776SZgrliEog/dmXrhABB6jXybytyw+CRkuP dXhrRmr+isZ9Y0gTzMN4+dILVgW4EozzoP0/sgZ04oWwDqQS30eU2qzRRzMbo+3k oYsZXeu3nhxcYppwXIDsfAEd/ygMFzaadRPKYhrFykR2rA/dpLYCvW2tfm5SuULp RxnKykFlVi8yVT64AovVm0XGOy/QTO5BBbUdftvZY9QCjGn/IEL8QFEz0rxZsb2L s0HgVMUcB1My38RksZQRKLMWCtqLqWnez3oCnPka+dxFQj5RU//vNtRoVh1ExbmW txHz48v00AKQvaudC4ujIspZlY8+UPdYQT0TNjhsfoUCgYEA+7yEvyCgRtYwUNm6 jHTg67LoSldHwENOry63qGZp3rCkWBkPXle7ulgRtuw+e11g4MoMMAgkIGyIGB/Z 6YvnQGmJCTMw+HHIyw3k/OvL1iz4DM+QlxDuD79Zu2j2UIL4maDG0ZDskiJujVAf sFOy4r36TvYedmd7qgh9pgpsFl8CgYEA5/v8PZDs2I1wSDGllGfTr6aeQcxvw98I p8l/8EV/lYpdKQMFndeFZI+dnJCcTeBbeXMmPNTAdL5gOTwDReXamIAdr93k7/x6 iKMHzBrpQZUMEhepSd8zdR1+vLvyszvUU6lvNXcfjwbu7gJQkwbA6kSoXRN+C1Cv i5/w66t0f1cCgYBt02FWwTUrsmaB33uzq4o1SmhthoaXKsY5R3h4z7WAojAQ/13l GwGb2rBfzdG0oJiTeZK3odWhD7iQTdUUPyU0xNY0XVEQExQ3AmjUr0rOte/CJww9 2/UAicrsKG7N0VYEMFCNPVz4pGz22e35T4rLwXZi3J2NqrgZBntK5WEioQKBgEyx L4ii+sn0qGQVlankUUVGjhcuoNxeRZxCrzsdnrovTfEbAKZX88908yQpYqMUQul5 ufBuXVm6/lCtmF9pR8UWxbm4X9E+5Lt7Oj6tvuNhhOYOUHcNhRN4tsdqUygR5XXr E8rXIOXF4wNoXH7ewrQwEoECyq6u8/ny3FDtE8xtAoGBALNFxRGikbQMXhUXj7FA lLwWlNydCxCc7/YwlHfmekDaJRv59+z7SWAR15azhbjqS9oXWJUQ9uvpKF75opE7 MT0GzblkKAYu/3uhTENCjQg+9RFfu5w37E5RTWHD2hANV0YqXUlmH3d+f5uO0xN7 7bpqwYuYzSv1hBfU/yprDco6 -----END PRIVATE KEY----- """ print(try? importRSA2048PrivateKeyPEM(benjyPrivateKeyPEM)) If you run this it prints: Optional(<SecKeyRef algorithm id: 1, key type: RSAPrivateKey, version: 4, 2048 bits (block size: 256), addr: 0x600000c5ce50>) Form a Digital Identity There are two common ways to form a digital identity: SecPKCSImport SecItemCopyMatching SecPKCSImport is the most flexible because it gives you an in-memory digital identity. You can then choose to add it to the keychain or not. However, it requires a PKCS#12 as input. If you’re starting out with separate private key and certificate PEMs, you have to use SecItemCopyMatching. Note macOS also has SecIdentityCreateWithCertificate, but it has some seriously limitations. First, it’s only available on macOS. Second, it requires the key to be in the keychain. If you’re going to add the key to the keychain anyway, you might as well use SecItemCopyMatching. To form a digital identity from a separate private key and certificate: Add the certificate to the keychain. Add the private key to the keychain. Call SecItemCopyMatching to get back a digital identity. Here’s an example of that in action: /// Imports a digital identity composed of separate certificate and private key PEMs. /// /// - important: See ``dataFromPEM(_:_:_:)`` for some important limitations. /// See ``importRSA2048PrivateKeyPEM(_:)`` for alternative strategies that are /// much easier to deploy. func addRSA2048DigitalIdentityPEMToKeychain(certificate: String, privateKey: String) throws -> SecIdentity { // First import the certificate and private key. This has the advantage in // that it triggers an early failure if the data is in the wrong format. let certificate = try importCertificatePEM(certificate) let privateKey = try importRSA2048PrivateKeyPEM(privateKey) // Check that the private key matches the public key in the certificate. If // not, someone has given you bogus credentials. let certificatePublicKey = try secCall { SecCertificateCopyKey(certificate) } let publicKey = try secCall { SecKeyCopyPublicKey(privateKey) } guard CFEqual(certificatePublicKey, publicKey) else { throw NSError(domain: NSOSStatusErrorDomain, code: Int(errSecPublicKeyInconsistent)) } // Add the certificate first. If that fails — and the most likely error is // `errSecDuplicateItem` — we want to stop immediately. try secCall { SecItemAdd([ kSecValueRef: certificate, ] as NSDictionary, nil) } // The add the private key. do { try secCall { SecItemAdd([ kSecValueRef: privateKey, ] as NSDictionary, nil) } } catch let error as NSError { // We ignore a `errSecDuplicateItem` error when adding the key. It’s // possible to have multiple digital identities that share the same key, // so if you try to add the key and it’s already in the keychain then // that’s fine. guard error.domain == NSOSStatusErrorDomain, error.code == errSecDuplicateItem else { throw error } } // Finally, search for the resulting identity. // // I originally tried querying for the identity based on the certificate’s // attributes — the ones that contribute to uniqueness, namely // `kSecAttrCertificateType`, `kSecAttrIssuer`, and `kSecAttrSerialNumber` — // but that failed for reasons I don't fully understand (r. 144152660). So // now I get all digital identities and find the one with our certificate. let identities = try secCall { SecItemCopyMatching([ kSecClass: kSecClassIdentity, kSecMatchLimit: kSecMatchLimitAll, kSecReturnRef: true, ] as NSDictionary, $0) } as! [SecIdentity] let identityQ = try identities.first { i in try secCall { SecIdentityCopyCertificate(i, $0) } == certificate } return try secCall(Int(errSecItemNotFound)) { identityQ } } IMPORTANT This code is quite subtle. Read the comments for an explanation as to why it works the way it does. Further reading For more information about the APIs and techniques used above, see: Importing Cryptographic Keys On Cryptographic Keys Formats SecItem: Fundamentals SecItem: Pitfalls and Best Practices Calling Security Framework from Swift TN3137 On Mac keychain APIs and implementations Finally, for links to documentation and other resources, see Security Resources. Revision History 2025-02-13 Added code to check for mismatched private key and certificate. 2025-02-04 First posted.
0
0
574
Feb ’25
How to use App Attest Environment?
Hi, I'm looking at adding App Attest to an app, and I think I understand the mechanics of the attestation process, but I'm having trouble figuring out how development and testing are supposed to work. Two main questions: The "App Attest Environment" -- the documentation says that attestation requests made in the .development sandbox environment don't affect the app's risk metrics, but I'm not sure how to actually use this sandbox. My understanding is that one of the things App Attest does is to ensure that your app has been appropriately signed by the App Store, so it knows that it hasn't been tampered with. But the docs say that App Store builds (and Test Flight and Developer Enterprise Program) always use the .production environment. Does App Attest actually work for local developer-build apps if you have this entitlement set? Presumably only on hardware devices since it requires the Secure Enclave? Does our headend have to do something different when verifying the public key and subsequent attested requests for an app that's using the .development sandbox? The docs do mention that a headend server should potentially track two keys per device/user pair so that it can have a production and development key. How does the headend know if a key is from the sandbox environment? Thanks!
0
0
133
Jun ’25
Fraud System Detection - variables recognition
I am currently working on Fraud System Detection that will be used by one of the financial institutions. Those tools are related to ensuring user security. Our goal is to identify features that can trigger an early warning system for attempted fraud. We have identified three uncertain variables: Whether the user is having a conversation while using our app, Whether the user has specific screen sharing apps on their phone, Whether the user has enabled VPN connection. Here my doubts appear: Can we check the presence of a telephone conversation if we are not a VOIP application? Can we check the presence of installed programs using Universal Link and canOpenUrl(_:) method? Can we read "SCOPED" key from CFNetworkCopySystemProxySettings() dictionary? I will be glad for any advice and help.
1
0
325
Feb ’25
SecItem: Fundamentals
I regularly help developers with keychain problems, both here on DevForums and for my Day Job™ in DTS. Many of these problems are caused by a fundamental misunderstanding of how the keychain works. This post is my attempt to explain that. I wrote it primarily so that Future Quinn™ can direct folks here rather than explain everything from scratch (-: If you have questions or comments about any of this, put them in a new thread and apply the Security tag so that I see it. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" SecItem: Fundamentals or How I Learned to Stop Worrying and Love the SecItem API The SecItem API seems very simple. After all, it only has four function calls, how hard can it be? In reality, things are not that easy. Various factors contribute to making this API much trickier than it might seem at first glance. This post explains the fundamental underpinnings of the keychain. For information about specific issues, see its companion post, SecItem: Pitfalls and Best Practices. Keychain Documentation Your basic starting point should be Keychain Items. If your code runs on the Mac, also read TN3137 On Mac keychain APIs and implementations. Read the doc comments in <Security/SecItem.h>. In many cases those doc comments contain critical tidbits. When you read keychain documentation [1] and doc comments, keep in mind that statements specific to iOS typically apply to iPadOS, tvOS, and watchOS as well (r. 102786959). Also, they typically apply to macOS when you target the data protection keychain. Conversely, statements specific to macOS may not apply when you target the data protection keychain. [1] Except TN3137, which is very clear about this (-: Caveat Mac Developer macOS supports two different keychain implementations: the original file-based keychain and the iOS-style data protection keychain. IMPORTANT If you’re able to use the data protection keychain, do so. It’ll make your life easier. See the Careful With that Shim, Mac Developer section of SecItem: Pitfalls and Best Practices for more about this. TN3137 On Mac keychain APIs and implementations explains this distinction. It also says: The file-based keychain is on the road to deprecation. This is talking about the implementation, not any specific API. The SecItem API can’t be deprecated because it works with both the data protection keychain and the file-based keychain. However, Apple has deprecated many APIs that are specific to the file-based keychain, for example, SecKeychainCreate. TN3137 also notes that some programs, like launchd daemons, can’t use the file-based keychain. If you’re working on such a program then you don’t have to worry about the deprecation of these file-based keychain APIs. You’re already stuck with the file-based keychain implementation, so using a deprecated file-based keychain API doesn’t make things worse. The Four Freedoms^H^H^H^H^H^H^H^H Functions The SecItem API contains just four functions: SecItemAdd(_:_:) SecItemCopyMatching(_:_:) SecItemUpdate(_:_:) SecItemDelete(_:) These directly map to standard SQL database operations: SecItemAdd(_:_:) maps to INSERT. SecItemCopyMatching(_:_:) maps to SELECT. SecItemUpdate(_:_:) maps to UPDATE. SecItemDelete(_:) maps to DELETE. You can think of each keychain item class (generic password, certificate, and so on) as a separate SQL table within the database. The rows of that table are the individual keychain items for that class and the columns are the attributes of those items. Note Except for the digital identity class, kSecClassIdentity, where the values are split across the certificate and key tables. See Digital Identities Aren’t Real in SecItem: Pitfalls and Best Practices. This is not an accident. The data protection keychain is actually implemented as an SQLite database. If you’re curious about its structure, examine it on the Mac by pointing your favourite SQLite inspection tool — for example, the sqlite3 command-line tool — at the keychain database in ~/Library/Keychains/UUU/keychain-2.db, where UUU is a UUID. WARNING Do not depend on the location and structure of this file. These have changed in the past and are likely to change again in the future. If you embed knowledge of them into a shipping product, it’s likely that your product will have binary compatibility problems at some point in the future. The only reason I’m mentioning them here is because I find it helpful to poke around in the file to get a better understanding of how the API works. For information about which attributes are supported by each keychain item class — that is, what columns are in each table — see the Note box at the top of Item Attribute Keys and Values. Alternatively, look at the Attribute Key Constants doc comment in <Security/SecItem.h>. Uniqueness A critical part of the keychain model is uniqueness. How does the keychain determine if item A is the same as item B? It turns out that this is class dependent. For each keychain item class there is a set of attributes that form the uniqueness constraint for items of that class. That is, if you try to add item A where all of its attributes are the same as item B, the add fails with errSecDuplicateItem. For more information, see the errSecDuplicateItem page. It has lists of attributes that make up this uniqueness constraint, one for each class. These uniqueness constraints are a major source of confusion, as discussed in the Queries and the Uniqueness Constraints section of SecItem: Pitfalls and Best Practices. Parameter Blocks Understanding The SecItem API is a classic ‘parameter block’ API. All of its inputs are dictionaries, and you have to know which properties to set in each dictionary to achieve your desired result. Likewise for when you read properties in output dictionaries. There are five different property groups: The item class property, kSecClass, determines the class of item you’re operating on: kSecClassGenericPassword, kSecClassCertificate, and so on. The item attribute properties, like kSecAttrAccessGroup, map directly to keychain item attributes. The search properties, like kSecMatchLimit, control how the system runs a query. The return type properties, like kSecReturnAttributes, determine what values the query returns. The value type properties, like kSecValueRef perform multiple duties, as explained below. There are other properties that perform a variety of specific functions. For example, kSecUseDataProtectionKeychain tells macOS to use the data protection keychain instead of the file-based keychain. These properties are hard to describe in general; for the details, see the documentation for each such property. Inputs Each of the four SecItem functions take dictionary input parameters of the same type, CFDictionary, but these dictionaries are not the same. Different dictionaries support different property groups: The first parameter of SecItemAdd(_:_:) is an add dictionary. It supports all property groups except the search properties. The first parameter of SecItemCopyMatching(_:_:) is a query and return dictionary. It supports all property groups. The first parameter of SecItemUpdate(_:_:) is a pure query dictionary. It supports all property groups except the return type properties. Likewise for the only parameter of SecItemDelete(_:). The second parameter of SecItemUpdate(_:_:) is an update dictionary. It supports the item attribute and value type property groups. Outputs Two of the SecItem functions, SecItemAdd(_:_:) and SecItemCopyMatching(_:_:), return values. These output parameters are of type CFTypeRef because the type of value you get back depends on the return type properties you supply in the input dictionary: If you supply a single return type property, except kSecReturnAttributes, you get back a value appropriate for that return type. If you supply multiple return type properties or kSecReturnAttributes, you get back a dictionary. This supports the item attribute and value type property groups. To get a non-attribute value from this dictionary, use the value type property that corresponds to its return type property. For example, if you set kSecReturnPersistentRef in the input dictionary, use kSecValuePersistentRef to get the persistent reference from the output dictionary. In the single item case, the type of value you get back depends on the return type property and the keychain item class: For kSecReturnData you get back the keychain item’s data. This makes most sense for password items, where the data holds the password. It also works for certificate items, where you get back the DER-encoded certificate. Using this for key items is kinda sketchy. If you want to export a key, called SecKeyCopyExternalRepresentation. Using this for digital identity items is nonsensical. For kSecReturnRef you get back an object reference. This only works for keychain item classes that have an object representation, namely certificates, keys, and digital identities. You get back a SecCertificate, a SecKey, or a SecIdentity, respectively. For kSecReturnPersistentRef you get back a data value that holds the persistent reference. Value Type Subtleties There are three properties in the value type property group: kSecValueData kSecValueRef kSecValuePersistentRef Their semantics vary based on the dictionary type. For kSecValueData: In an add dictionary, this is the value of the item to add. For example, when adding a generic password item (kSecClassGenericPassword), the value of this key is a Data value containing the password. This is not supported in a query dictionary. In an update dictionary, this is the new value for the item. For kSecValueRef: In add and query dictionaries, the system infers the class property and attribute properties from the supplied object. For example, if you supply a certificate object (SecCertificate, created using SecCertificateCreateWithData), the system will infer a kSecClass value of kSecClassCertificate and various attribute values, like kSecAttrSerialNumber, from that certificate object. This is not supported in an update dictionary. For kSecValuePersistentRef: For query dictionaries, this uniquely identifies the item to operate on. This is not supported in add and update dictionaries. Revision History 2025-05-28 Expanded the Caveat Mac Developer section to cover some subtleties associated with the deprecation of the file-based keychain. 2023-09-12 Fixed various bugs in the revision history. Added a paragraph explaining how to determine which attributes are supported by each keychain item class. 2023-02-22 Made minor editorial changes. 2023-01-28 First posted.
0
0
4.1k
May ’25
DeviceCheck.generateToken, Error: com.apple.devicecheck.error 0
Dear Apple Developer Support Team, We are experiencing a recurring issue with the DeviceCheck API where the following error is being returned: com.apple.devicecheck.error 0 Upon analyzing our logs, we have noticed that this error occurs significantly more often when users are connected to Wi-Fi networks, compared to mobile networks. This leads us to suspect that there might be a relationship between Wi-Fi configuration and the DeviceCheck service’s ability to generate or validate tokens. We would like to know: Is this error code (0) known to be caused by specific types of network behavior or misconfigurations on Wi-Fi networks (e.g., DNS filtering, firewall restrictions, proxy servers)? Are there any recommended best practices for ensuring reliable DeviceCheck API communication over Wi-Fi networks? Additionally, could you please clarify what general conditions could trigger this com.apple.devicecheck.error 0? The lack of specific documentation makes debugging this issue difficult from our side. Any guidance or internal documentation on this error code and its potential causes would be greatly appreciated. IDE: Xcode 16.3 Looking forward to your support. Best regards,
2
0
112
May ’25
Passkey returns unknown error instead of excludedCredentials error when “Saving on another device” option is used.
Hello, I'm receiving an unknown error instead of the excluded credentials error when using the "Save on another device" option for Passkey creation. When creating the ASAuthorizationPlatformPublicKeyCredentialProvider request to pass to the ASAuthorizationController. The excludedCredentials property is used to add a list of credentials to exclude in the registration process. This is to prevent duplicate passkeys from being created if one already exists for the user. When trying to create a duplicate passkey using the same device, the ASAuthorizationControllerDelegate method authorizationController(controller, didCompleteWithError:) is called. The error received has localized description “At least one credential matches an entry of the excludeCredentials list in the platform attached authenticator." When trying to create a duplicate passkey using the “Save on another device” option. The delegate method is called, but the error received has code 1000 ("com.apple.AuthenticationServices.AuthorizationError" - code: 1000). Which maps to the unknown error case in ASAuthorization error type.
0
0
205
May ’25
How to Test Email Sharing Flow Again with Sign In with Apple, Using Same Apple ID?
I am developing an app that uses Sign In with Apple for authentication, and I need to test different scenarios, such as when a user chooses not to share their email. However, after logging in for the first time, I cannot reset the permissions flow to test again. Even after uninstalling the app, revoking access to the Apple ID in ‘Settings > Apps Using Apple ID,’ and attempting to log in again, only the token (identityToken) is returned, while the full information (email, name, surname) is no longer provided. This makes it difficult to simulate the initial user behavior, especially when choosing to share or not share their email. I would like to know: 1. Is there a way to completely reset the permissions flow so I can test as if it were the first time using the same Apple ID? 2. Are there any recommended solutions for development scenarios without needing to create multiple Apple IDs? Thank you for any guidance on how to proceed.
0
0
364
Jan ’25
requestTrackingAuthorization stuck in .notDetermined
When developing and testing using my phone I got prompted for allowing app tracking. I later uploaded a build to TestFlight, deleted the old testing app and installed the TestFlight build. I am now stuck in an infinite loop of not getting prompted for allowing app tracking for the app. When entering the app settings the toggle for tracking never appears which leaves me not able to enter the app's content. My guess is that the prompt can only be shown once for the app bundle, but there has to be a way for me to get prompted again without changing the app bundle id. Help is appreciated since this app is scheduled to be published in a week.
0
0
122
May ’25
Cannot revoke the account of Sign in with Apple
Our service has ended and the app has been removed from the App store. This app supported Sign in with Apple, but even if I try to revoke the account from the iOS settings or account.apple.com on the web, but can't delete it and no error is displayed. Does anyone know the cause of this problem or have encountered it? I'm not sure if it's related, but this app was previously transferred from another organization.
0
0
261
Jan ’25
App Closes After Apple Sign-In on Vision Pro When Launched Directly
I am experiencing an issue with Apple Sign-In on Vision Pro. When I build and run the app from Xcode, everything works fine—after signing in, the app returns to the foreground as expected. However, when I launch the app directly on Vision Pro (not from Xcode), after completing the sign-in process, the app does not reopen from the background automatically. Instead, it closes, and I have to manually tap the app icon to reopen it. Has anyone else encountered this issue? Is there a way to ensure the app properly resumes after sign-in without requiring manual intervention?
0
0
501
Feb ’25
Webview In-App Browser Microsoft Login Redirection Not Working
Hello, We received a rejection on one of our IOS applications because we were doing Microsoft MSAL login through the user's browser. The representative recommended that we use Webview to do in-app logins. However when we tried to handle the custom app uri redirection (looking like myapp://auth/), Webview does not seem to send the user back to the application. Does anyone have a fix for this? Thanks!
0
0
287
Sep ’25
Help w/ Access Itunes
I’ve come to discover over the course of three weeks of trying to gain access to my original iTunes account that because of the old security protocols I cannot get access to my music. Apple has said there is no way to access that data without being able to send a reset to the old deleted email attached to that data. That said Cox deleted all of my emails when they migrated over to yahoo so I cannot send an email to reset password to gain access and Apple does not have a protocol in place even though it’s very clear. The current account is linked to the old account. Any of your developers out there have an idea on how I can get past this because the birthdate and the username are not matching up to what they should be. Appreciate your brain muscle guys. It’s a lifetime of music.
0
0
237
Dec ’24